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1. Introduction

For many problems in elasticity theory it is important to compute solutions of the pure Neumann
problem

−∇ · σ(u) = f in Ω, σ(n)(u) = g on ∂Ω

where Ω ⊂ R2 is some open domain. In particular, if the domain has a crack, in fracture mechanics
one is often interested in computing the stress intensity factors Kj . Stress intensity factors (SIFs)
play an essential role while computing the path of the crack in the solid under an external load. The
accuracy of the computed crack path depends highly on the SIFs. For isotropic solids, there are various
methods to compute these factors, but up to now, it is not clear, if this all works for anisotropic ones.
Nevertheless, for every homogeneous anisotropic solid, KI and KII can be computed very accurately
by evaluating an integral over so-called weight functions ζj and the applied loads, namely

Kj =

∫
Ω
ζj · f dx+

∫
∂Ω
ζj · g ds, j = 1, 2.

These weight functions, introduced by Maz'ya and Plamenevsky [MP77], are composed of singular
eigenfunctions of the elasticity operator in the half-plane with a semi-in�nite crack and some special so-
lutions of the Neumann problem in Ω. Eigenfunctions of the elasticity operator are known analytically
for isotropic homogeneous solids and can be computed with arbitrary precision for anisotropic ones.
The solution of the Neumann problem depends on the domain and has to be computed numerically.

A solution of the pure Neumann problem is uniquely determined up to a rigid motion only and the
Green's formula implies, that the data f and g must be orthogonal to such motions. The direct
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Galerkin discretization leads to a linear system of equations with a sti�ness matrix A with three-
dimensional kernel and a right-hand side orthogonal to this kernel. Computing a �nite element solution
from this system brings several numerical di�culties.

First of all, the linear system cannot be solved by a standard solver like the Conjugate Gradient
method. One has to modify the method or has to use an other approach like the Minimal Residual
method.
Moreover, a discrete solution only exists, if the discrete right-hand side is orthogonal to the kernel of
A. While computing the discrete right-hand side using quadrature formulas and with �nite precision,
the orthogonality condition is not ful�lled precisely. The accuracy of the numerical solution and the
stress intensity factors will highly depend on this precision, while using the Minimal Residual approach.

To avoid these di�culties, a widely used basic approach to �x the solution is to prescribe the value on
at least two nodes. This eliminates the kernel of the sti�ness matrix and one can apply a conventional
solver. The linear system is solvable for all right-hand sides. From a mathematical point of view,
the computed �nite element solution is only a weak solution in the Sobolev space H1(Ω) and it is
not obvious that such a solution is continuous or exists at a single point. Besides this, the numerical
solution will have a peak at these nodes and this can destroy the computation of SIFs.

We want to follow another idea to solve the Neumann problem, presented in [BL05] for the Laplace
equation. There exists a unique solution of the Neumann problem, if we look for a solution in a
subspace of H1(Ω), complementary to the space of rigid motions. Such a subspace HR was introduced
in [BS02] and with a projection

P : H1(Ω) −→ HR

an arbitrary solution of the Neumann problem can be �xed uniquely in this subspace. This also works
in the discrete case. Using a discrete analogue to P, the unique numerical solution in HR can be found
from any numerical solution of the Neumann problem. The discrete projection can also be used to
improve the accuracy of the orthogonality conditions of the discrete data.

In this paper we will consider a bounded domain with a crack and our main interest is to compute
the displacement �eld and the stress intensity factors KI and KII under an external load. First, we
will construct a subspace HR, complementary to rigid motions and a projection P onto it. On HR we
recall the existence and uniqueness of a weak solution.
We will show, that the Galerkin discretization leads to a linear system with a three-dimensional null-
space, while using Lagrangian bilinear �nite elements. It turns out, that the continuous orthogonality
conditions are equivalent to the discrete ones. We give a discrete analogue of the projection P to
compute the �nite element approximation of the unique solution inHR and we will show the advantages
of this projection method. For a Compact Tension specimen, well-known in fracture mechanics, we
will present numerical results, containing the displacement �eld and stress intensity factors.

2. The Neumann problem

Let G be a domain in the plane R2 with compact closure G and Lipschitz boundary Γ, containing
the origin. We consider the pure Neumann problem of 2-dimensional elasticity theory in the domain
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Ω := G \ Ξ, where Ξ := {x ∈ G : x1 ≤ 0, x2 = 0} is a rectilinear edge cut:

L (∇x)u(x) = −∇ · σ(u) = f(x), x ∈ Ω,

N (∇x)u(x) = σ(n)(u) = 0, x ∈ Ξ+ ∪ Ξ−,

N (∇x)u(x) = σ(n)(u) = p(x), x ∈ Γ,

(1)

n = (n1, n2)
⊤ is the outward normal, u = (u1, u2)

⊤ the displacement vector, f = (f1, f2)
⊤ the vector

of body forces and p = (p1, p2)
⊤ denotes the vector of surface load. With Ξ+ and Ξ− we denote the

upper and lower sides of the crack, considered to be tension-free, see Figure 1. To omit technical
di�culties, we also assume, that Ω can be divided in two Lipschitz domains Ω− = {x ∈ Ω : x2 < 0}
and Ω+ = {x ∈ Ω : x2 > 0}. The strain tensor in cartesian coordinates is given by

εij(u;x) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2,

and by Hooke's Law, for the stress tensor the relation holds

σij(u;x) =
2∑

k,l=1

aklijεkl(u;x), i, j = 1, 2.

The real constants aklij , called elastic moduli, satisfy the following symmetry and positivity conditions

aklij = alkji = ajkli ,

2∑
i,j,k,l=1

ζija
kl
ij ζkl ≥ c0

2∑
i,j=1

|ζij |2, c0 > 0

for any symmetric real 2× 2 matrix ζ. In an anisotropic material there are 6 di�erent elastic moduli,
for an isotropic material holds

a1111 = a2222 = λ+ 2µ a1122 = a2211 = λ a1212 = a2121 = µ a1211 = a1222 = 0

with the Lamé constants λ and µ.

Figure 1: Homogeneous elastic body Ω with a rectilinear edge cut Ξ
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3. The variational problem and weak solutions

We recall the de�nition of a weak solution. With Hm(Ω) we denote the usual Sobolev space of order
m with norm

∥u;Hm(Ω)∥ =

(
m∑
k=0

∥∇ku;L2(Ω)∥2
)1/2

,

here we use the notation

∥∇ku;L2(Ω)∥2 :=
∑
|α|=k

∥∂αxu;L2(Ω)∥2.

The expression (u, v)Ω :=
∫
Ω u · v dx indicates the inner-product of the Lebesgue space L2(Ω) and

H1/2(∂Ω) denotes the space of traces equipped with the norm

∥u;H1/2(∂Ω)∥ := inf
{
∥v;H1(Ω)∥ : v ∈ H1(Ω) and u = v on ∂Ω

}
.

In our notation, we do not distinguish between scalar and vector-valued functions. The vector space
of rigid motions is

R =
{
u ∈ C∞(R2) : u = a+ b · xR, a ∈ R2, b ∈ R

}
with vR(x) := (v2(x),−v1(x))⊤ for every �eld v. On the Lipschitz domain G for �elds u ∈ H2(G),
v ∈ H1(G) we have Green's formula

(L u, v)G + (N u, v)∂G = a(u, v) with a(u, v) =

∫
G

2∑
i,j=1

2∑
k,l=1

aklijεkl(u)εij(v) dx.

Note that 1
2a(u, v) is the elastic energy. As considered, Ω can be divided in two Lipschitz domains

Ω+ and Ω− and applying Green's formula to each, we �nd

a(u, v)Ω = a(u, v)Ω+ + a(u, v)Ω− = (L u, v)Ω + (N u, v)∂Ω + (N u, v)γ+ + (N u, v)γ−

with γ :=
{
x ∈ G : x1 > 0, x2 = 0

}
. If u ∈ H2(Ω), v ∈ H1(Ω), the traces on γ+ and γ− coincide.

Taking into account the direction of the outward normal on γ+ and γ−, we �nd the equation

(N u, v)γ+ = −(N u, v)γ−

and Green's formula still holds on Ω. For right-hand sides f ∈ L2(Ω), g ∈ H1/2(∂Ω) with g = p on
Γ and g = 0 on Ξ, we call u ∈ H1(Ω) a weak solution of the Neumann problem, if the relation

a(u, v) = (f, v)Ω + (g, v)∂Ω =: F (v) (2)

holds for all v ∈ H1(Ω).

Clearly, R ⊂ H1(Ω) and since a(u, v) = 0 for all u ∈ H1(Ω) and v ∈ R, the data f and g must ful�ll
the necessary condition ∫

Ω
f · v dx+

∫
∂Ω
g · v ds = 0 for all v ∈ R, (3)

such functions are called self-balanced. On the other hand, if a(u, v) = 0 for all v ∈ H1(Ω), then
a(u, u) = 0, hence ε(u) = 0, which implies u ∈ R and thus a weak solution is determined up to a rigid
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motion only. A weak solution can always be �xed if we look for u ∈ HR, where HR is a (topological
and algebraical) complement of the three dimensional space R in H1(Ω). Such a subspace can be found
by the following construction: Fix a basis {ψ1, ψ2, ψ3} of R and three continuous linear functionals
Fj ∈ (H1(Ω))∗ with Fj(ψ

k) = δj,k, where δj,k is the Kronecker symbol, and put

HR :=
3∩

j=1

ker ker(Fj).

Then QRu :=
∑3

j=1 Fj(u)ψ
j de�nes a continuous linear projection onto R, while PRu := u−QRu is

a continuous linear projection onto HR. Of course, HR and R are not H1(Ω)-orthogonal in general.
Following [BS02, p.285], we choose the basis

ψ1 =

(
1

0

)
, ψ2 =

(
0

1

)
, ψ3 = xR − 1

|Ω|

∫
Ω
xR dx

and the functionals

F1(u) =
1

|Ω|

∫
Ω
u1 dx, F2(u) =

1

|Ω|

∫
Ω
u2 dx, F3(u) = − 1

2|Ω|

∫
Ω
rot(u) dx

with rot(u) := ∂x1u2−∂x2u1. By this special choice, the complement of R in H1(Ω) constructed above
is

H1
R(Ω) :=

{
u ∈ H1(Ω) :

∫
Ω
u dx = 0,

∫
Ω
rot(u) dx = 0

}
and the Projection PR : H1(Ω) → H1

R(Ω) is given by

PRu := u− 1

|Ω|

∫
Ω
u dx+

1

2|Ω|

∫
Ω
rot(u) dx

(
xR − 1

|Ω|

∫
Ω
xR dx

)
.

To prove the existence of a weak solution for self-balanced right-hand sides, we use

|F (v)| ≤ c
(
∥f ;L2(Ω)∥+ ∥g;H1/2(∂Ω)∥

)
∥v;H1(Ω)∥.

Thus, F is a continuous functional on H1(Ω). The well-known inequality of Korn's type in the
following Lemma proves the coerciveness of the bilinear form a(·, ·) on H1

R(Ω).

Lemma 1. For u ∈ H1
R(Ω) there exists a constant c > 0 with

∥ε(u);L2(Ω)∥ ≥ c∥u;H1(Ω)∥

For a proof see [CC05], [KO88] or [BS02]. The existence and uniqueness of a weak solution follows
now in a standard way from the Lax-Milgram Theorem.

Although a weak solution of the Neumann problem exists only for self-balanced data, the previous
arguments show, that the variational problem

a(u, v) = (f, v)Ω + (g, v)∂Ω for all v ∈ H1
R(Ω) (4)

is well-posed in H1
R(Ω) for any f ∈ L2(Ω) and g ∈ H1/2(∂Ω) with g = 0 on Ξ. The next result shows

that if f and g do not satisfy the orthogonality conditions (3), a �eld u ∈ H1(Ω) solves a Neumann
problem with modi�ed right-hand sides, if u satis�es (4).



6

Lemma 2. Let u ∈ H1(Ω) be a solution of problem (4) with f ∈ L2(Ω), g ∈ H1/2(∂Ω) with g = 0
on Ξ. Then u solves the Neumann problem (1) with right-hand sides P ∗

Ωf and P ∗
∂Ωg, where

P ∗
Ωf := f − 1

|Ω|

(∫
Ω
f dx+

∫
∂Ω
g ds

)
,

P ∗
∂Ωg := g − 1

2|Ω|

(
(f, xR)Ω + (g, xR)∂Ω − 1

|Ω|

∫
Ω
xR dx

(∫
Ω
f dx+

∫
∂Ω
g ds

))
nR

Proof: By the Gauss Theorem, for u ∈ H1(Ω) holds∫
Ω
rot(u) dx =

∫
Ω
∇ · uR ds =

∫
∂Ω
n · uR ds = −

∫
∂Ω
nR · u ds

and a simple calculation proves

(f, PRv)Ω + (g, PRv)∂Ω = (P ∗
Ωf, v)Ω + (P ∗

∂Ωg, v)∂Ω for all v ∈ H1(Ω).

From H1(Ω) = H1
R(Ω)⊕R we have a(u, v) = a(u, PRv) for all v ∈ H1(Ω) and because u is a solution

of problem (4) there holds

a(u, v) = a(u, PRv) = (f, PRv)Ω + (g, PRv)∂Ω = (P ∗
Ωf, v)Ω + (P ∗

∂Ωg, v)∂Ω (5)

for all v ∈ H1(Ω). In particular we have for v ∈ C∞
0 (Ω)

(u,L v)Ω = a(u, v) = (P ∗
Ωf, v)Ω,

which implies L u = P ∗
Ωf in the distributional sense. Moreover, we have L u ∈ L2(Ω) and the Gauss

theorem in the weak formulation implies

a(u, v) = (L u, v)Ω + (N u, v)∂Ω

for all v ∈ H1(Ω). Together with (5) this leads to

(L u− P ∗
Ωf, v)Ω + (N u− P ∗

∂Ωg, v)∂Ω = (N u− P ∗
∂Ωg, v)∂Ω = 0 for all v ∈ H1(Ω).

Since v ∈ H1(Ω) is arbitrary, this implies N u = P ∗
∂Ωg. �

4. Finite Element Solutions

Consider a triangulation

Th =
{
T (r) : r = 1, . . . , Rh

}
of Ω into isoparametric rectangles. In the following, we always use bilinear Lagrangian �nite elements
and for simplicity, we assume that Ω has no reentrant corners. We also neglect curved parts of the
boundary and assume

Rh∪
r=1

T
(r)

= Ω.

With xhk , k = 1, . . . , Nh we denote the vertices of the triangulation and{
ϕhi
}N
i=1

with ϕhi (x
h
k) = δi,k for i, k ∈ {1, . . . , N}
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is a nodal basis of the space of shape functions P. As we allow isoparametric bilinear elements T (r)

we assume that there exist constants h
(r)
2 > h

(r)
1 > 0 and x

(r)
0 ∈ T (r) with

B
h
(r)
1

(x
(r)
0 ) ⊂ T (r) ⊂ B

h
(r)
2

(x
(r)
0 ),

h
(r)
2

h
(r)
1

< C for all 1 ≤ r ≤ Rh (6)

where C does not depend on r and Bh(x) is the circle with radius h around x. Moreover, we assume
that every element T (r) is convex and we de�ne the discretization parameter as

h := max
{
2h

(r)
2 : 1 ≤ r ≤ Rh

}
.

This conditions ensure, that the elements T (r) are not too degenerated and are needed for standard
error estimates (see e.g. [Cia02]). To approximate vector �elds, we need a vector-valued �nite element
space and we de�ne a nodal basis {φh

i }i=1,...,2N by

φh
2i−1(x) = ϕhi (x)e1, φh

2i(x) = ϕhi (x)e2, i = 1, . . . , N

where ej denotes the j-th unit vector. We de�ne the �nite element space

Vh :=

{
vh : vh(x) =

2N∑
i=1

viφ
h
i (x)

}
⊂ H1(Ω) ∩ C0(Ω ∪ ∂Ω)

and the interpolation operator

Πu : H1(Ω) ∩ C0(Ω ∪ ∂Ω) −→ Vh with Πu :=
2N∑
i=1

u(xhi )φ
h
i (x).

Because the domain Ω has a crack Ξ, there is a di�erence between Ω and Ω ∪ ∂Ω. We cannot require,
that functions are continuous over the crack and in Ω.

In the following we assume, that the data f and g are self-balanced. The Galerkin approximation
problem is to �nd uh ∈ Vh with

a(uh, v) = (f, v)Ω + (g, v)∂Ω for all v ∈ Vh.

Denoting the coe�cient vector of uh ∈ Vh by u := (u1, . . . , u2N )⊤, the problem is reduced to solve the
system of linear equations

Au = f + g

with the sti�ness matrix

Ai,j = a(φh
i , φ

h
j ), i, j = 1, . . . , 2N

and the discrete right-hand side

(f + g)i =

∫
Ω
f · φh

i dx+

∫
∂Ω
g · φh

i ds, i = 1, . . . , 2N

or

f + g =
(
(f1, ϕ

h
1)Ω + (g1, ϕ

h
1)∂Ω, (f2, ϕ

h
1)Ω + (g2, ϕ

h
1)∂Ω, . . . , (f2, ϕ

h
N )Ω + (g2, ϕ

h
N )∂Ω

)⊤
.
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Because of R ⊂ Vh, there is no reason why the discrete problem should have a unique solution or
is always solvable. To prove similar solvability conditions as in the continuous case, we need some
more de�nitions. With x = (x1, x2, . . . , x2N )⊤ := (xh1,1, x

h
1,2, . . . , x

h
N,1, x

h
N,2)

⊤ we denote the vector of

vertices and xR = (x2,−x1, . . . , x2N ,−x2N−1)
⊤ is the rotated one, similar to the continuous case. The

mean value of a function uh ∈ Vh can be written as∫
Ω
uh dx =

N∑
i=1

(
u2i−1

u2i

)
(ϕhi , 1)Ω = b⊤1 u+ b⊤2 u

and the integral over the rotation of uh ∈ Vh is∫
Ω
rot(uh) dx =

∫
Ω
∂1uh,2 − ∂2uh,1 dx =

N∑
i=1

u2i(∂1ϕ
h
i , 1)Ω − u2i−1(∂2ϕ

h
i , 1)Ω = b⊤Ru

with the vectors

b1 :=
(
(ϕh1 , 1)Ω, 0, (ϕ

h
2 , 1)Ω, 0, . . . , (ϕ

h
N , 1)Ω, 0

)⊤
b2 :=

(
0, (ϕh1 , 1)Ω, 0, (ϕ

h
2 , 1)Ω, . . . , 0, (ϕ

h
N , 1)Ω

)⊤
bR :=

(
−(∂2ϕ

h
1 , 1)Ω, (∂1ϕ

h
1 , 1)Ω, . . . ,−(∂2ϕ

h
N , 1)Ω, (∂1ϕ

h
N , 1)Ω

)⊤
.

With the de�nitions c1 :=
(
1, 0, 1, 0, . . . , 1, 0

)⊤
and c2 :=

(
0, 1, 0, 1, . . . , 0, 1

)⊤
, we can formulate the

solvability conditions of the system of linear equations.

Lemma 3. The linear system of equations Au = f + g with Ai,j = a(φi, φj) and fi + gi =
(f, φh

i )Ω + (g, φh
i )∂Ω is solvable if and only if

(f + g)⊤v = 0 for all v ∈ ker(A)

The kernel is of the form

ker(A) = span{c1, c2,xR}

while using Lagrangian elements. The continuous compatibility conditions

(fj , 1)Ω + (gj , 1)∂Ω = 0, (f, xR)Ω + (g, xR)∂Ω = 0, j = 1, 2,

are equivalent to the discrete compatibility conditions

c⊤1 (f + g) = 0, c⊤2 (f + g) = 0, x⊤
R(f + g) = 0.

Proof: For the �rst conclusion, we only have to prove the representation of the kernel. Because we
use Lagrangian elements, the representation

1 =

N∑
i=1

ϕhi (x), xR =

N∑
i=1

(
xh2ie1 − xh2i−1e2

)
ϕhi (x)

is valid. For k ∈ {1, . . . , 2N} it is clear that

0 = a(ej , φ
h
k) =

N∑
i=1

a(ϕhi ej , φ
h
k) = (Acj)k , j = 1, 2.
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The same argumentation leads to 0 = a(xR, φ
h
k) = (AxR)k. Again, by construction of the nodal basis

we have

(fj , 1)Ω + (gj , 1)∂Ω =

N∑
i=1

(
(fj , ϕ

h
i )Ω + (gj , ϕ

h
i )∂Ω

)
= c⊤j (f + g), j = 1, 2

(f, xR)Ω + (g, xR)∂Ω =

N∑
i=1

(
x2i((f1, ϕ

h
i )Ω + (g1, ϕ

h
i )∂Ω)− x2i−1((f2, ϕ

h
i )Ω + (g2, ϕ

h
i )∂Ω)

)
= x⊤

R(f + g)

The lemma is proved. �

The system of linear equations has only a solution, if the discrete right-hand side is orthogonal to the
kernel of system matrixA. We have proven, that this condition is ful�lled, if the data are self-balanced.
Solving the linear system numerically, there is another problem. The system is not uniquely solvable
and the system matrix is only semi-de�nite. We can not apply a standard method to solve like Conju-
gate Gradient. Nevertheless, such problems can be solved by the Minimal Residual method (MinRes)
developed in [PS75]. But again, the computed solution is not necessarily the normalized unique one.
For the continuous problem, we have solved this problems with the help of projections. It is obvious
to translate this ideas to the discrete case.

The discrete projector P is given by

P = I − c1b
⊤
1 + c2b

⊤
2

|Ω|
+

1

2|Ω|

(
xR −

(
c1b

⊤
1 + c2b

⊤
2

)
|Ω|

xR

)
b⊤R

and we prove b⊤1 Pu = b⊤2 Pu = 0 which is equivalent to (PRuh,j , 1)Ω = 0, j = 1, 2. A short calculation
shows

b⊤1
c1b

⊤
1

(1, 1)Ω
=

1

(1, 1)Ω

(
N∑
i=0

(ϕhi , 1)Ω

)
b⊤1 = b⊤1 , b⊤2

c2b
⊤
2

(1, 1)Ω
= b⊤2 , b⊤1 c2b

⊤
2 = b⊤2 c1b

⊤
1 = 0

and we �nd b⊤1 Pu = b⊤2 Pu = 0. For our choice of �nite elements it is clear that

1 =
N∑
i=0

ϕhi (x), |Ω| = (1, 1)Ω =
N∑
i=0

(ϕhi , 1)Ω

and therefore, for the derivatives of the shape functions hold

0 = ∂k1 =
N∑
i=0

∂kϕ
h
i (x)

∣∣∣∣
T (r)

, 0 =
N∑
i=0

(∂kϕ
h
i , 1)Ω, k = 1, 2.

With

−2 =
(rot(xR), 1)Ω

(1, 1)Ω
= − 1

(1, 1)Ω

N∑
i=1

(
x2i−1(∂1ϕ

h
i , 1)Ω + x2i(∂2ϕ

h
i , 1)Ω

)
=

1

(1, 1)Ω
b⊤RxR

we get b⊤RPu = 0 what means (rot(PRuh), 1)Ω = 0. Finally, the discrete analogue of the projector P ∗

is

P⊤ = I − b1c
⊤
1 + b2c

⊤
2

|Ω|
+

1

2|Ω|
bR

(
x⊤
R − x⊤

R

(
b1c

⊤
1 + b2c

⊤
2

)
|Ω|

)
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With the same arguments one can easily proof c⊤P⊤(f + g) = 0 for all c ∈ ker(A).

We will take great advantage of the discrete projectors in practical computations as we will see in the
last paragraph. If one can compute some discrete solution u, the approximation of the unique solution
u ∈ H1

R(Ω) is obtained just by multiplication with P . Moreover, the projector P⊤ can be used to
improve the precision of the discrete orthogonality conditions.

5. Numerical examples

For computations we use the C++ library deal.II developed at the Numerical Methods group at Uni-
versity of Heidelberg. deal.II is open source and for more information see www.dealii.org. We use
structured meshes (see Figure 3) and only global re�nement. We don't want to deal with local re�ne-
ment or hanging nodes.

In Fracture Mechanics, one of the main interests is the computation of the stress intensity factors KI

and KII . If we consider the elastic solid Ω under an external surface load g ∈ H1/2(∂Ω) without body
forces and tension-free crack Ξ, the stress intensity factors can computed by

KI =

∫
∂Ω
ζ1 · g ds, KII =

∫
∂Ω
ζ2 · g ds

see e.g. [Bue70], [MP77]. The so-called weight functions ζj are solutions of the homogeneous problem

L (∇x)ζ
j(x) = 0, x ∈ Ω

N (∇x)ζ
j(x) = 0, x ∈ ∂Ω

with a singularity at the crack tip

ζj(x) = r−1/2Ψj(ϑ) + ζ̃j(x)

Ψj are smooth functions, which are known analytically for isotropic solids, see [NP96], and can be
computed numerically for anisotropic ones [PB95]. Because r−1/2Ψj are solutions of the homogeneous
elasticity problem in the whole plane with a semi-in�nite crack, the remainder ζ̃j is a solution of the
problem

L (∇x)ζ̃
j(x) = 0, x ∈ Ω

N (∇x)ζ̃
j(x) = 0, x ∈ Ξ+ ∪ Ξ−

N (∇x)ζ̃
j(x) = p̃(x), x ∈ Γ

(7)

with p̃ := −N (∇x)
(
r−1/2Ψj

)
. Moreover, the right-hand side g̃, de�ned by g̃ = p̃ on Γ and g̃ = 0 on

Ξ, is self-balanced and in H1/2(∂Ω). Therefore, a unique solution ζ̃j ∈ H1
R(Ω) exists. For more details

about weight-functions we refer to [CDD03] and [NP94, p. 278].

We take into account, that we only have to compute the solutions ζ̃j with �nite energy by the Finite
Element method. There is no need to compute solutions with singularities.

5.1 Solving the linear system

As mentioned above, we use MinRes [PS75] to solve the system Au = b := f+g with u0 = 0. MinRes
is a Krylov subspace method and computes in every iteration step

∥b−Auk∥2 = min, uk ∈ Kk(A; b), k ≤ 2N (8)
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where Kk(A; b) = span{b,Ab, . . . ,Ak−1b} is the Krylov subspace of dimension k. For more details
about Krylov subspace methods see [Mei99] and for a detailed representation of MinRes [SVM00] also.
We know, that a solution u exists, if the data are orthogonal on the kernel of A. But while computing
b by using quadrature formulas and in �oating point arithmetic, the right-hand side is not exactly
orthogonal, which is of great importance for numerical computations. MinRes computes a numerical
solution, even the orthogonality conditions do not hold, but whether this is a solution of the linear
system, depends on the accuracy of the orthogonality conditions. We will show this in an example.

5.2 Compact Tension specimen

We consider the classical Compact Tension (CT-) specimen subjected to two symmetric forces F =
4500N in x2-direction applied in the two holes according to Figure 2. All other faces are traction free.

Figure 2: Compact Tension specimen

We select the length units to w = 72mm and a = 17mm. The thickness of the specimen is 10mm. To
compare our method with well-known results, we choose the material properties

λ = 56023
N

mm2
µ = 26364

N

mm2
or E = 70656

N

mm2
ν = 0.34

corresponding to aluminium alloy 7075-T651. First, we give results for the computed displacement.
In [Mur87, p.18], the crack opening at the front face at point x0 := (−a− 0.25w, 0) is given by

δ0 = 0.1121 mm± 0.5%

and at the load line at the point xl := (−a, 0) by

δl = 0.0586 mm± 0.5%

if we enforce plain strain conditions. For a symmetric loading, the displacement �eld of an isotropic
solid is symmetric with respect to the crack. Table 4 show the computed solution and the computed
projected solution at the points x0 and xl. The projected solution is symmetric up to 10 digits and
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DoF δl,h |δl − δl,h| δ0,h |δ0 − δ0,h|

198 0.0545 0.0040 0.1023 0.0098

686 0.0647 0.0061 0.1225 0.0103

2526 0.0515 0.0070 0.0982 0.0139

9662 0.0615 0.0029 0.1172 0.0051

37758 0.0577 0.0008 0.1097 0.0023

149246 0.0579 0.0006 0.1101 0.0020

593406 0.0580 0.0005 0.1103 0.0018

2366462 0.0588 0.0002 0.1114 0.0007

Table 1: Crack opening of the projected solution

Table 1 shows the resulting crack opening. Using 2366462 DoF (degrees of freedom) in the �nite
element computation, the relative error in the crack opening at point xl is smaller than 0.34% and at
point x0 smaller than 0.62%.
Computing the mean value of the last solution and the integral over its rotation we have

b⊤1 u+ b⊤2 u = −0.000393 b⊤Ru = 0.000011

These integrals do not really vanish and the computed solution is not the normalized and unique one.
In contrast, the integrals of the projected solution are

b⊤1 Pu+ b⊤2 Pu = 4.14E − 18 b⊤Ru = 1.95E − 19.

Applying the symmetric force F , the discrete orthogonality conditions are ful�lled,

c⊤1 g = 1.54E − 18, c⊤2 g = 9.33E − 19, x⊤
Rg = 3.98E − 17

and there is no need to project the data to improve this results.
Next, we compute the stress intensity factors, given in [Sra76] by

KI = 251.4
N

mm3/2
, KII = 0.

N

mm3/2

with an accuracy of ±0.5% for 0.2 ≤ a
w ≤ 1.0. Table 5 and Table 7 show the computed results without

projecting the data or the solutions. As one can see, the orthogonality conditions are not ful�lled in
the �rst iteration steps and MinRes computes no solution. To ful�ll the internal stopping criterion
with eps = 1. × 10−10, numerous iteration steps are needed, but the residual norm ∥Auk − b∥2 does
not become small. The computed stress intensity factors are far from the exact values, not until using
37 758 DoF. Computing KI with a �nite element solution with 2 366 462 DoF, we have an error

|KI −KI,h| = 1.4484, which means, the relative error is ≤ 0.54%.

In contrast, Table 6 and Table 8 show the results while projecting the data and the solutions. The
residual norm decrease linear, up to the e�ect of rounding errors, using more then 149 246 DoF.
Computing KI in the last iteration step, the error is

|KI −KI,h| = 0.2216, which means, the relative error is ≤ 0.088%.

This shows one advantage using discrete projections.
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Figure 3: Used mesh with 686 DoF

In the �nal iteration step, the relative error of the computed values of KI di�er only by 0.45%, but the
number of degrees of freedom in the �nite element solution is very large and computing such a solution
needs several time. Projecting the data and the solution, the relative error in KI is less than 0.87%
with only 37 758 DoF and such a �nite element solution can be computed in a fractional amount of
time. Without projecting, this error is about 2%. This is a real advantage of using projections and
is of great interest while computing crack paths for example. Approximating the path of a crack in a
solid by a polygon, one has to compute SIFs in numerous approximation steps and using projections
will save a lot of computing time. We will show this in upcoming papers.

5.3 An example for an anisotropic solid

After we have shown some of the advantages and the accuracy of our projection method, we discuss
an anisotropic example. We consider the CT-specimen, subjected to the same symmetric forces and
again, we want to compute the stress intensity factors KI and KII . The only di�erence to the example
before is the change of the elastic behavior of the solid. In [BSHW+05, p. 2349] an orthotropic material
with two planes of elastic symmetry is given. We denote this material axes by z1 and z2 and the angle
between the material axes and the crack by β, see Figure 4. For β = 0 the material axes and the
coordinate system coincide. If we change the angle β, the crack lies not in a plane of elastic symmetry
and we have to rotate the elastic moduli also. Of course, this is not the case if we consider an isotropic
solid. Enforcing plane stress conditions, the resulting elastic moduli for di�erent angles β are given in
Table 2.

We use the same meshes and numbers of DoF as in the isotropic example and compute the stress
intensity factors KI and KII using our projection method. The results are given in Table 3. We do not
present the orthogonality conditions and the numerical results without using projections for all angles
and give them only for β = 0 in Table 9 and Table 10. For all other angles the di�erence in results
look nearly the same as for β = 0.
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Figure 4: Material and coordinate axes

β = 0 β = 15◦ β = 30◦ β = 45◦

a1111 25128200 22038000 14711400 7344260

a2222 1758980 1799580 3026780 7344260

a1122 474924 1999760 5049430 6574260

a1212 385000 1909835 4959505 6484350

a1211 0 -5562250 -7700675 -5842314

a1222 0 -280065 -2418503 -5842314

Table 2: Elastic moduli for plane stress conditions

An important fact is, that the SIFs strongly depend on the angle between the axes of elastic symmetry
and the crack. Even though the applied force and the solid are symmetric with respect to the crack,
the stress intensity factor KII is not zero and not even small compared to KI , if β ̸= 0. We can only
expect thatKII vanishes, if the material is orthotropic and the crack lies in a plane of elastic symmetry.

We also remark, that the numerical results for KI and KII are signi�cant worse without using our
projection method as in the isotropic case. Since the results in the �nal steps only di�er by digits while
using projections, otherwise the numbers really jump and one can not see convergence.

DoF β = 0 β = 15◦ β = 30◦ β = 45◦

KI KII KI KII KI KII KI KII

198 4207.25 5.33E − 08 747.36 89.56 202.72 62.95 96.47 50.69

686 4469.93 5.21E − 08 821.51 93.97 236.29 67.12 118.13 55.69

2526 3437.78 4.14E − 08 643.78 66.50 190.51 49.42 98.38 42.92

9662 4053.59 4.27E − 08 765.70 74.26 229.97 55.41 119.89 48.81

37758 3781.40 4.11E − 08 716.95 67.41 216.96 49.97 113.74 44.25

149246 3789.58 4.80E − 08 719.71 66.71 218.61 49.18 114.99 43.65

593406 3793.57 5.05E − 08 721.04 66.37 219.40 48.81 115.60 43.36

2366462 3794.65 5.45E − 08 721.64 66.45 219.79 49.01 115.94 43.52

Table 3: Computed KI and KII for di�erent angles β

Acknowledgement: This paper is based on investigations of the collaborative research center SFB/TR
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DoF Iter. uh(x0) PRuh(x0)

198 54 x+0 (−0.017709,+0.049081) (−0.017368,+0.051172)

x−0 (−0.017709,−0.053263) (−0.017368,−0.051172)

686 96 x+0 (−0.020695,+0.060249) (−0.020020,+0.061276)

x−0 (−0.020695,−0.062303) (−0.020020,−0.061276)

2526 183 x+0 (−0.016654,+0.048362) (−0.015819,+0.049103)

x−0 (−0.016654,−0.049844) (−0.015819,−0.049103)

9662 343 x+0 (−0.019750,+0.057881) (−0.018812,+0.058634)

x−0 (−0.019750,−0.059387) (−0.018812,−0.058634)

37758 649 x+0 (−0.018398,+0.054152) (−0.017595,+0.054897)

x−0 (−0.018398,−0.055642) (−0.017595,−0.054897)

149246 1263 x+0 (−0.018394,+0.054277) (−0.017649,+0.055076)

x−0 (−0.018394,−0.055876) (−0.017649,−0.055076)

593406 2484 x+0 (−0.018384,+0.054316) (−0.017674,+0.055153)

x−0 (−0.018386,−0.055998) (−0.017674,−0.055153)

2366462 4878 x+0 (−0.018467,+0.054853) (−0.017655,+0.055720)

x−0 (−0.018553,−0.056587) (−0.017655,−0.055720)

Table 4: Solution and projected solution at point x0

DoF Iter. ∥Auk − b∥2 c⊤0 g1 c⊤1 g1 x⊤
Rg1 KI

198 49780 1.61E + 15 4.57E − 01 5.11E − 13 6.36E − 12 5.71E + 10

686 24090 5.53E + 13 1.97E − 02 7.95E − 13 1.63E − 11 1.07E + 09

2526 163880 1.03E + 12 1.15E − 03 3.19E − 13 1.09E − 11 4.36E + 06

9662 1662 6.33E + 09 7.18E − 05 3.23E − 13 7.73E − 12 3.60E + 04

37758 609 2.24E − 07 4.48E − 06 4.20E − 13 5.91E − 11 247.7834

149246 1175 5.35E − 07 2.80E − 07 3.14E − 13 3.27E − 11 249.3430

593406 2297 2.77E − 06 1.75E − 08 1.76E − 13 2.09E − 11 250.1723

2366462 4459 3.31E − 05 1.09E − 08 9.03E − 13 1.90E − 11 252.8423

Table 5: Orthogonality conditions and computed KI without projection
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DoF Iter. ∥Auk − b∥2 c⊤0 P
⊤g1 c⊤1 P

⊤g1 x⊤
RP

⊤g1 KI

198 56 5.60E − 02 2.27E − 13 5.11E − 13 9.09E − 12 270.7616

686 100 1.28E − 03 8.52E − 14 5.68E − 13 2.54E − 11 292.2746

2526 190 3.87E − 05 2.27E − 13 3.19E − 13 2.47E − 11 225.6401

9662 358 1.22E − 06 2.81E − 12 3.23E − 13 2.12E − 10 266.7616

37758 683 9.52E − 08 5.36E − 12 3.05E − 13 5.22E − 10 249.1829

149246 1330 4.89E − 07 2.59E − 11 5.41E − 13 8.10E − 10 249.9049

593406 2612 2.76E − 06 1.92E − 11 1.76E − 13 4.20E − 10 250.2581

2366462 5164 1.55E − 06 1.08E − 11 3.17E − 13 2.58E − 10 251.1723

Table 6: Computed Stress Intensity Factors KI with projection

DoF Iter. ∥Auk − b∥2 c⊤0 g2 c⊤1 g2 x⊤
Rg2 KII

198 93103 1.85E + 15 8.52E − 14 4.57E − 01 5.70E + 00 2.50E + 11

686 8989 1.34E + 14 8.52E − 14 1.96E − 02 1.06E − 01 7.94E + 09

2526 13992 9.43E + 12 9.94E − 14 1.15E − 03 6.29E − 02 2.13E + 08

9662 3805 7.56E + 10 1.70E − 13 7.17E − 05 3.89E − 04 1.17E + 05

37758 605 1.88E − 07 3.26E − 13 4.48E − 06 2.42E − 05 8.37E − 10

149246 1170 2.06E − 07 8.81E − 13 2.80E − 07 1.51E − 06 1.62E − 09

593406 2282 4.11E − 07 5.68E − 13 1.74E − 08 9.47E − 08 4.11E − 09

2366462 4390 2.07E − 06 4.37E − 12 1.09E − 08 6.12E − 08 4.81E − 08

Table 7: Orthogonality conditions and computed KII without projection

DoF Iter. ∥Auk − b∥2 c⊤0 P
⊤g2 c⊤1 P

⊤g2 x⊤
RP

⊤g2 KII

198 56 7.48E − 02 2.84E − 14 2.55E − 13 1.81E − 12 6.78E − 13

686 100 1.33E − 03 6.53E − 13 7.81E − 14 6.18E − 11 1.55E − 12

2526 190 4.26E − 05 1.56E − 13 1.42E − 13 2.18E − 11 1.43E − 12

9662 353 1.47E − 06 7.81E − 14 2.80E − 11 7.45E − 11 1.47E − 13

37758 673 5.46E − 08 1.44E − 12 5.10E − 11 3.56E − 10 4.28E − 12

149246 1312 6.47E − 08 3.55E − 13 2.61E − 10 6.18E − 10 1.51E − 11

593406 2576 3.65E − 07 4.68E − 13 1.93E − 10 3.09E − 10 2.19E − 11

2366462 5051 2.02E − 06 1.37E − 12 1.08E − 10 1.22E − 10 1.10E − 10

Table 8: Orthogonality conditions and computed KII with projection
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DoF Iter. ∥Auk − b∥2 c⊤0 g1 c⊤1 g1 x⊤
Rg1 KI

198 34030 4.48E + 17 98.3139 4.83E − 08 2.25E − 06 −3.04E + 14

686 27483 2.32E + 15 12.7839 3.79E − 08 2.17E − 06 1.78E + 12

2526 97671 4.48E + 13 1.8272 2.93E − 08 2.01E − 06 −7.72E + 09

9662 12394 1.00E + 12 4.23E − 02 2.50E − 08 1.90E − 06 1.61E + 07

37758 1502 3.01E + 00 2.54E − 03 2.48E − 08 1.01E − 06 3771.11

149246 1573 1.03E − 04 5.82E − 04 2.31E − 08 9.57E − 07 3787.73

593406 2899 6.37E − 05 4.19E − 05 1.86E − 08 8.98E − 07 3799.78

2366462 5682 3.87E − 04 3.89E − 05 1.91E − 08 9.93E − 07 3832.05

Table 9: Orthogonality conditions and computed KI without projection for the orthotropic material
(β = 0)

DoF Iter. ∥Auk − b∥2 c⊤0 g2 c⊤1 g2 x⊤
Rg2 KII

198 407692 9.09E + 16 2.29E − 07 2.59E + 01 6.34E + 01 1.10E + 13

686 23472 3.38E + 14 2.02E − 07 1.04E + 00 1.23E + 01 −1.44E + 11

2526 83432 7.62E + 13 1.79E − 07 4.48E − 01 1.88E + 00 2.78E + 09

9662 2407 5.37E + 12 1.29E − 07 8.90E − 03 9.84E − 01 −5.85E + 07

37758 2170 1.17E + 11 1.26E − 07 1.93E − 03 1.47E − 01 1.07E + 06

149246 2097 3.85E − 01 9.18E − 08 6.17E − 04 8.74E − 03 4.34E − 01

593406 3678 4.34E − 03 1.68E − 08 7.35E − 05 6.83E − 04 5.38E − 03

2366462 6472 1.02E − 06 5.52E − 08 9.21E − 06 3.72E − 06 7.99E − 08

Table 10: Orthogonality conditions and computed KII without projection for the orthotropic material
(β = 0)
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