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Abstract. Nonlinear time-dependent Schrödinger equations (NLSE) model several impor-
tant problems in quantum physics and morphogenesis. Recently, vortex lattice formation
were experimentally found in Bose-Einstein condensate and Fermi super�uids, which are
modeled by adding a rotational term in the NLSE equation. Numerical solutions have been
computed by using separate approaches for time and space variables. If we see the complex
equation as a system, wave methods can be used.
In this article, we consider �nite element approximations using continuous Galerkin schemes
in time and space by adaptive mesh balancing both errors. To get this balance, we adapt
the dual weighted residual method used for wave equations and estimates of error indicators
for adaptive space-time �nite element discretization. The results show how important is
dynamic re�nement to control the degrees of freedom in space.

Key Words: nonlinear time-dependent Schrödinger equation, dual weighted residual method, adap-
tive Galerkin method.

1. Introduction

Dynamics of ultracold atoms is a complex phenomena, where parameter changes can involve phase tran-
sitions like super�uidity.When using external magnetic �elds changing across the Feshbach resonance,
the classical Bose-Einstein Condensate (BEC) for bosons can change to Barden-Cooper-Schrie�er su-
per�uidity of fermions. To ensure experimental evdence, quantized vortices are observed. This phe-
nomena has been experimentally studied by Zwierlein et al. [26] for a strongly interacting Fermi gas.
The authors use the magnetic �eld to create lattices with di�erent vortex number ranging from 1 to
40 and di�erent lifetime showing a very rich problem. The vortex number depends on the rotational
frequency. Finding the critical frequency which the vortex can last longer is another problem to model.
To model this problem, a rotational term is added to the nonlinear Schrödinger equation (NLSE) to
trigger vortex formation [3]

iε∂tu(x, t) = −ε
2

2
∆u(x, t) + V (x)u(x, t)− f

(
x; |u(x, t)|2

)
u(x, t) + iεΩL(x,∇x)u(x, t), (1)

where x ∈ Rd, t > 0, ε is a small positive parameter, and the rotational term is modelled by the
x3-component of angular momentum

iΩL(x,∇x)u(x, t) = iΩ
(
x1∂x2u(x, t)− x2∂x1u(x, t)

)
, (2)

with rotational velocity Ω ∈ R. Di�erent theoretical and numerical approaches have been used to
understand this problem. Most of the abstract results deals with the search for ground states for the
stationary NLSE. In case of the dynamic equation, results are scarce. We will focus on the numerical
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solutions. Bao et al. [9] used polar coordinates to get a constant rotating term. Then, they de�ne an
algorithm based on a time splitting and Fourier pseudospectral discretization for the space-variable.
The advantages of theses algorithms are: explicit, unconditionally stable, four-order accuracy in time.
Ming et al [18] also studied a two-component Bose-Einstein condensates (BECs) using the time splitting
sine pseudospectral method. Recently, Antoine & Duboscq [3] used Krylov subspace solvers to improve
the speed of the iterative schem for the linear system. Also, FEM has been used to study the classical
NSLE [1]. Rencently, Henning et al [16] propose a FEM approach for space variables and backward
Euler discretization for the time variable to derive stability results. Using high order Time Splitting
approach, Hofstätter et al. [17] studied the error behavior for this problem.
In this work we compute numerical solutions of the NLSE based on �nite element approximations
using continuous Galerkin schemes in time and in space. Some works on GP equaiton also studied
both adaptivity (see [22]). A question in this context is always how to obtain precise solutions with less
computational e�ort. Increasing the precision is always related with the re�nement of the underlying
discretization, but especially in time-dependent problems global re�nement is not a realistic option,
since the number of degrees of freedom will increase astronomically. Adaptive mesh re�nement and
an e�cient strategy for balancing the temporal and spatial discretization error contributions is one of
the a keys to compute precise numerical results. For mesh re�nement in time, we need a mechanism
to detect the time intervals for decreasing the time steps to get higher precision. One of the well-
known approaches to gain such a time step control is embedded Runge-Kutta schemes as the Fehlberg
method or the Cash-Karp method. See [15] for a review and many more details. Here we follow another
concept. In many situations we are not directly interested in the precision of the numerical solution,
but a quantity of physical interest which can be computed with the numerical solution, for example
the energy or the mass. Adaptive mesh re�nement based on error control of a given functional is the
core of the dual weighted residual (DWR) method [10], [7] applied to wave equations. The DWR was
applied to several physical problems in the last years. The main goal of this work is to adapt the DWR
method to nonlinear time-dependent Schrödinger equations.
In section 2 we introduce the problem and notations. We present continuous Galerkin schemes in
time and space in section 3. We show how the given Galerkin scheme can be reinterpreted as a
Crank-Nicolson time stepping method and present the ideas of the DWR method. We calculate the
temporal and spatial error indicators and use an algorithm from [20] for the balance of the di�erent
error contributions. Finally we present numerical results in section 4.

2. Description of the problem

Super�uidity is a phenomenon where a �uid preserves its kinetic energy. In case of ultracold gases,
the solitons decay to a single or several quantized vortices depending on the rotational frequency [13].
At very low temperatures, a Bose-Einstein condensate in a rotational frame can be described by the
complex-valued macroscopic wave function u whose evolution is governed by a mean �eld nonlinear
Schrödinger equation known as the Gross-Pitaevskii equation (GPE) with an angular momentum
rotational term:

i~∂tu(x, t) =

(
− ~2

2m
∆ +

m

2
V (x) +NU0|u(x, t)|2 + i~ΩL(x,∇x)

)
u(x, t), x ∈ G, t > 0. (3)

G ⊂ Rd is a domain in d = 2 or d = 3 space dimension, ~ is the Planck constant, m is the atomic
mass and N is the number of atoms in the condensate. The function V is a given real-valued external
potential depending on the application. In this paper, we consider the function V as a harmonic trap
potential

V (x) =
ω2

2

(
γ2

1x
2
1 + γ2

2x
2
2 + γ2

2x
2
3

)
,
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where γj , j = 1, 2, 3, are the trap frequencies and x = (x1, x2, x3)> ∈ R3. The number U0 = 4π~2a
m

describes the interaction between the atoms with the wave scattering length a. If U0 is positive, the
interaction is called repulsive and if it is negative the interaction is called attractive. An example for
a set of parameters used in experiments with 23Rb presented in [2] is

~ = 1.05 · 10−34J, m ≈ 1.44 · 10−25kg, N ≈ 102 . . . 107, a = 5.1 · 10−9m.

By dividing equation (3) by the mass m, we introduce a dimensionless parameter ε := ~
m , 0 < ε ≤ 1,

the so-called �scaled� Planck constant, see (1). Depending on the problem the parameter ε can be very
small, see e.g. [9] and [4] for further details. In this work we do not focus on the parameter ε and
assume ε = 1. The main goal of this work is a �nite element scheme with adaptive mesh re�nement in
time and space for the time-dependent Schrödinger equation:

i∂tu(x, t) = −1

2
∆u(x, t) + V (x)u(x, t)− f

(
|u(x, t)|2

)
u(x, t) + iΩL(x,∇x)u(x, t) (4)

for x ∈ G ⊂ Rd, d = 2, 3, t > 0, with initial data

u(x, 0) = u0(x), x ∈ G,

and subjected to homogeneous Dirichlet boundary conditions

u(x, t) = 0, x ∈ ∂G, t ≥ 0.

We assume further, that f : R+ → R, f(s) ∼ s, is a real-valued, continuously di�erentiable function
and refer to [8] for more details.

The energy functional associated with the NLSE (4) is de�ned as

E
(
u(t)

)
=

1

2

∫
G

(
1

2
|∇u(x, t)|2 + V (x)|u(t, x)|2 − F

(
|u(x, t)|2

)
+ iΩu(x, t)L(x,∇x)u(x, t)

)
dx

where u is the conjugate of u and F (ρ) =
∫ ρ

0 f(s) ds. A short calculation shows that the energy is a
real number: Splitting the wave function into its real and imaginary part, u = u0 + iu1, the rotational
part of the energy is equal to

∫
G

iu(x, t)L(x,∇x)u(x, t) dx =

∫
G

(
u1(x, t)L(x,∇x)u0(x, t)− u0(x, t)L(x,∇x)u1(x, t)

)
dx

+ i

∫
G

(
u0(x, t)L(x,∇x)u0(x, t) + u1(x, t)L(x,∇x)u1(x, t)

)
dx, t > 0.

Because we assume homogeneous Dirichlet boundary conditions, the imaginary part vanishes applying
the Gauss theorem. The Schrödinger equation preserves energy, E(u(t)) = E(u(0)), and mass

M(u(0)) = M
(
u(t)

)
=

∫
G
|u(x, t)|2 dx, t ≥ 0.

We normalize the wave function by requiring that the initial data is normalized to

‖u0‖2 :=

∫
G
|u0(x)|2 dx = 1.

Especially for numerical investigations, we are interested in stationary states with low energy of the
NLSE, so called ground state solutions. Their existence for general conditions is still an open prob-
lem. In our numerical experiments, we will ful�ll the conditions given in [9] to get the existence and
uniqueness.
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Stationary solutions are decomposed by

u(x, t) = e−iµtΦ(x)

where µ ∈ C is the chemical potential and Φ is a function independent of time. This separation of
variables leaves the mass ‖u‖2 constant in time. We notice that the pair (µ,Φ) solves the nonlinear
eigenvalue problem

µΦ(x) = −1

2
∆Φ(x) + V (x)Φ(x)− f

(
|Φ(x)|2

)
Φ(x) + iΩL(x,∇)Φ(x), x ∈ G,

Φ(x) = 0, x ∈ ∂G.
(5)

under the normalization condition ‖Φ‖2 = 1. For known Φ, the eigenvalue µ can be computed from
the relation

µ‖Φ‖2 =

∫
G

(
1

2
|∇Φ(x)|2 + V (x)|Φ(x)|2 − f

(
|Φ(x)|2

)
|Φ(x)|2 + iΩΦ(x)L(x,∇x)Φ(x)

)
dx

= 2E(Φ) +

∫
G

(
F (|Φ(x)|2)− f

(
|Φ(x)|2

)
|Φ(x)|2

)
dx,

(6)

and these functions correspond to critical points of the energy functional E on the unit sphere.

3. Error estimation and time step control

In this section we develop a framework for computing numerical solutions of the NLSE (4). Therefore,
we formulate the approximation of solutions of (4) by continuous Galerkin �nite elements in time and
in space. We approximate the real and the imaginary parts by the same �nite elements and use the
dual weighted residual method for error and time step control. The dual weighted residual (DWR)
method was mainly developed by Rannacher and his coworkers and it was adapted with great success
to many di�erent problems of mathematical physics in the last years. See e.g. [10], [11], [7], [5], [12]
and the works cited in [7] for an introduction and more details. Indeed, we develop an error estimator
of the form

J(u)− J(ukh) ≈ ηk + ηh

where J is a quantity of physical interest, for example the energy at some time, and ηk and ηh are
bounds for the temporal and spatial discretization errors. These error bounds must be localized to
time and space cells in order to use them for mesh adaption and we calculate the explicit form of these
error indicators. The last step is then a strategy for mesh adaption providing a good balancing and
an equilibrated reduction of the temporal and spatial discretization errors.

Notation and weak formulation

Splitting the wave function into its real and imaginary part, u = u0 + iu1, the function u can be
identi�ed with the pair {u0, u1} ∈ V × V, where V is an appropriate function space. The equations
involving u0 and u1 read

∂tu
0 = −1

2
∆u1 + V u1 − f

(
|u|2
)
u1 + ΩL(∇)u0 =: A2(u),

−∂tu1 = −1

2
∆u0 + V u0 − f

(
|u|2
)
u0 − ΩL(∇)u1 =: A1(u),

in G× I, (7)
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in a time interval I = (0, T ) and with initial condition

u0(x, 0) = u0
0(x), u1(x, 0) = u1

0(x), x ∈ G. (8)

We start with a Gelfand triple V ↪→ H ↪→ V∗. A natural choice for the energy space for real and
imaginary parts of solutions is

V := H1
0 (G) and H := L2(G).

Further we introduce the Hilbert space

X := W (0, T ) :=
{
v : v ∈ L2(I,V) and ∂tv ∈ L2(I,V∗)

}
which is continuously embedded in C(I,H) (e.g. [25]). The inner product in L2(I,H) is given by

((φ, ψ)) := (φ, ψ)L2(I,H) =

∫ T

0

(
φ(t), ψ(t)

)
G
dt, (ψ, φ)G :=

∫
G
ψ(x)φ(x) dx.

Let Aj : V ×V ×V → R, j = 1, 2, the spatial semilinear elliptic forms describing the weak formulation
of problem (7):

A1(u)(φ) :=
1

2

(
∇u0,∇φ

)
+
(
V u0, φ

)
−
(
f
(
|u|2
)
u0, φ

)
,−Ω

(
L(∇)u1, φ

)
,

A2(u)(φ) :=
1

2

(
∇u1,∇φ

)
+
(
V u1, φ

)
−
(
f
(
|u|2
)
u1, φ

)
+ Ω

(
L(∇)u0, φ

)
.

Introducing the space-time semilinear forms Aj : X × X × X → R, j = 1, 2,

A1((u)(φ)) :=

∫ T

0
A1

(
u(t)

)(
φ(t)

)
dt, A2((u)(φ)) :=

∫ T

0
A2

(
u(t)

)(
φ(t)

)
dt,

the system (7) is equivalent to the following variational problem: Find u = {u0, u1} ∈ X ×X satisfying((
∂tu

0, ϕ0
))

= A2((u)(ϕ0)),
((
∂tu

1, ϕ1
))

= −A1((u)(ϕ1)),

u0(0) = u0
0, u1(0) = u1

0,
(9)

for all test functions ϕ = {ϕ0, ϕ1} ∈ X ×X , where u0 = {u0
0, u

1
0} ∈ L2(G)×L2(G) describes the initial

condition.

Time discretization by continuous Galerkin �nite elements

In order to discretize the time interval we choose a decomposition

I = [0, T ] = {0} ∪
M⋃
m=1

Im

with M time steps Im := (tm−1, tm] of length km := tm − tm−1 using the time points

0 = t0 < t1 < . . . < tm < . . . < tM = T.

The maximal length k := maxm km and we denote the time discretization by Tk = {Im : 1 ≤ m ≤M}.
For reasons which become clear later, we require, that M is an even number: M ∈ 2N. To allow
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adaptive mesh re�nement in space, we follow the Rothe approach and discretize in time �rst, then in
space. For r ∈ N0 we de�ne the function spaces

X rk :=
{
vk ∈ C(I,H) : vk

∣∣
Im
∈ Pr(Im,V)

}
⊂ X ,

X̃ rk :=
{
vk ∈ L2(I,V) : vk

∣∣
Im
∈ Pr(Im,V) and vk(0) ∈ L2(G)

}
,

where Pr(Im,V) denotes the space of polynomials up to degree r on the interval Im with values in
V. The space X rk consists of piece-wise polynomials which are continuous in time and this will be
the trial space for the continuous (in time) Galerkin method. The elements of the space X̃ rk can have
discontinuities at the end points of the intervals Im. This space will be used as the test space for the
Galerkin method. The degree of the test functions is chosen one degree lower as the trial functions,
because one degree of freedom of the trial functions per time interval is �xed by the global continuity
condition. By this construction we get a quadratic system of equations which can be decoupled in each
time step. The resulting scheme can be reinterpreted as a time-stepping method.

With these de�nitions, the time-discrete variational problem can be stated to: Find uk = {u0
k, u

1
k} ∈

X rk ×X rk satisfying

((∂tu
0
k, ϕ

0))−A2((uk)(ϕ
0)) +

(
u0
k(0), ϕ0,−

0

)
G

=
(
u0

0, ϕ
0,−
0

)
G
,

((∂tu
1
k, ϕ

1)) +A1((uk)(ϕ
1)) +

(
u1
k(0), ϕ1,−

0

)
G

=
(
u1

0, ϕ
1,−
0

)
G
,

(10)

for all ϕ = {ϕ0, ϕ1} ∈ X̃ r−1
k × X̃ r−1

k . Here,

ϕj,−m = lim
τ↘0

ϕj(tm − τ) = ϕj(tm), j ∈ {0, 1},

denotes the value of a possible discontinuous test function at time point tm.

For the discretization in space we choose a mesh Th which consists of nonoverlapping quadrilateral
cells K. The discretization parameter h is de�ned as the maximum of all cell diameters. We allow
�hanging nodes�, which means that cells can have nodes which lie on midpoints of faces or edges of
neighboring cells. In addition, we require that the mesh consists of patches of cells. This means, that
Th is obtained by uniform re�nement of a coarser mesh T2h, such that one can always combine four (in
two dimensions) or eight (in three dimensions) adjacent cells of Th to obtain one cell, called a patch,
of T2h.

On the mesh Th we construct a �nite element space

Vsh :=
{
v ∈ C(G) : v

∣∣
K
∈ Qs(K) for K ∈ Th

}
⊂ V.

We use isoparametric elements on the space Qs(K), which consists of shape functions obtained by
transformations of polynomials Q̂s(K̂)d on the reference cell K̂ = [0, 1]d, see e.g. [7]. The mesh can be
adapted in each time step, but the local time steps km are kept constant in space. With each point tm
in time we associate a mesh Tmh and a corresponding (spatial) �nite element space Vs,mh and we de�ne
the space-time �nite element space by

X̃ r,skh :=
{
vkh ∈ L2(I,V) : vkh

∣∣
Im
∈ Pr(Im,Vs,mh ) and vk(0) ∈ Vs,0h

}
⊂ X̃ rk .

In order to ensure the global continuity of the functions of the trial space, we use an approach from [20]:
Let {τ0, . . . , τr} be a basis of Pr(Im,R) with the following property:

τ0(tm−1) = 1, τ0(tm) = 0, τi(tm−1) = 0, i = 1, . . . , r.
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We set

X r,s,mkh := span
{
τivi : v0 ∈ Vs,m−1

h , vi ∈ Vs,mh , i = 1, . . . , r
}
⊂ Pr(Im,V)

and de�ne the trial space

X r,skh :=
{
vkh ∈ C

(
I,H

)
: vk
∣∣
Im
∈ X r,s,mkh

}
⊂ X rk .

This construction ensures the continuity of all functions of the space X r,skh , because the vanishing spatial
degrees of freedom in Vs,m−1

h are coupled only with the temporal basis function τ0 which vanishes at
the right end of each subinterval, see [20] for further details. The fully discrete so-called cG(s)cG(r)
space-time �nite element Galerkin formulation, which reads: Find ukh = {u0

kh, u
1
kh} ∈ X

r,s
kh × X

r,s
kh

satisfying

((∂tu
0
kh, ϕ

0))−A2((ukh)(ϕ0)) +
(
u0
kh(0), ϕ0,−

0

)
G

=
(
u0

0, ϕ
0,−
0

)
G
,

((∂tu
1
kh, ϕ

1)) +A1((ukh)(ϕ1)) +
(
u1
kh(0), ϕ1,−

0

)
G

=
(
u1

0, ϕ
1,−
0

)
G
,

(11)

for all ϕ = {ϕ0, ϕ1} ∈ X̃ r−1,s
kh × X̃ r−1,s

kh .

The notation cG(s)cG(r) describes a Galerkin method with a �continuous in space� discretization of
order s and with a �continuous in time� discretization of order r, see for example [14].

Relation to a time stepping scheme

For the convenience of the reader we outline the connection to time stepping schemes. Let us consider
the case r = 1, the local problem on the subinterval Im = (tm−1, tm] reads∫

Im

{
(∂tu

0, ϕ0)−A2(u)(ϕ0)
}
dt = 0,

∫
Im

{
(∂tu

1, ϕ1) +A1(u)(ϕ1)
}
dt = 0,

(12)

for all ϕ0 ∈ P0(Im,Vh) and ϕ1 ∈ P0(Im,Vh). With the nodal basis{ϕ1, . . . , ϕN} of the spatial �nite
element space Vh the trial functions {u0

kh, u
1
kh} at a time point tm can be written as

U jm(x) := ujkh(x, tm) =

N∑
l=1

yjm,lϕl(x), j ∈ {0, 1}, (13)

and on the interval Im there holds

ujkh(x, t)
∣∣
Im

=
N∑
l=1

{
yjm−1,l +

(t− tm−1)

km
(yjm,l − y

j
m−1,l)

}
ϕl(x), j ∈ {0, 1}. (14)

Inserting (13) into equations (12) and testing successively with the basis functions ϕi, i = 1, . . . , N ,
leads to the following set of fully discrete equations

My0
m = My0

m−1 +
km
2

(
A2(Um−1) + A2(Um)

)
,

My1
m = My1

m−1 −
km
2

(
A1(Um−1) + A1(Um)

)
,

(15)
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with the mass matrix and the vectors

M =
(
(ϕl, ϕi)

)N
i,l=1

, A1

(
Um
)

:=
(
A1(Um)(ϕi)

)N
i=1
, A2

(
Um
)

:=
(
A2(Um)(ϕi)

)N
i=1
.

That means that cG(s)cG(1) is algebraically equivalent to the Crank-Nicolson scheme, an implicit
Runge-Kutta scheme with two stages and of order two. This result was shown for the wave equation
in [5]. It is well-know that the Crank-Nicolson scheme is unconditionally stable in the L2 norm, of con-
vergence order two and energy conserving, all these properties hold for the cG(s)cG(1) Galerkin scheme.

For practical reasons we need further requirements on the used meshes. The time stepping method
(15) works without problems if the mesh does not change between two steps. But if we allow dynamic
mesh adaption in each time step, we have to calculate inner products of functions of the spaces Vs,m−1

h

and Vs,mh . Integrals over the di�erent nodal basis functions cannot be evaluated cell-wise by quadrature
rules because the integrands are not necessarily smooth inside each cell. To overcome this problem,
we additionally assume, that all meshes Tmh result from one mesh T̃h by hierarchical re�nement or

coarsening. In this case it is possible to build up a mesh Tm−1/2
h as the �union� of the two meshes. In

other words, the mesh Tm−1/2
h is the set of the most re�ned cells of the meshes Tm−1

h and Tmh . For

the corresponding �nite element space Vs,m−1/2
h there holds Vs,m−1

h ⊂ Vs,m−1/2
h and Vs,mh ⊂ Vs,m−1/2

h .
The nodal basis functions of Vs,m−1

h and of Vs,mh can be expressed as linear combinations of the basis

functions of Vs,m−1/2
h . Due to this fact integrals can be evaluated cell-wise on Tm−1/2

h , see the discussion
in [20] and also [5] for more details.

The dual weighted residual method

We consider an output functional J : X × X → R which represents the quantity of physical interest:

J(u) =

∫ T

0
J1

(
u(t)

)
dt+ J2

(
u(T )

)
,

where J1 : V × V → R and J2 : H × H → R are three times continuously di�erentiable functionals.
The functional J1 or J2 may be zero. If ukh is the solution of the discrete problem (11), the goal of
this section is the a posteriori estimation with respect to J in the following form:

J(u)− J(ukh) ≈ ηk + ηh.

The quantity ηk describes the error due to the time discretization and ηh the error due to the dis-
cretization in space. We start with an abstract result and refer to [7] for more details.

Theorem 1 (Becker & Rannacher [11]). Let u ∈ V the solution of the variational problem

A(u)(ψ) = 0 for all ψ ∈ V.

This equation is approximated by a Galerkin method using a �nite dimensional subspace Vh ⊂ V:

uh ∈ Vh : A(uh)(ψh) = 0 for all ψh ∈ Vh.

If J is a three-times di�erentiable functional on V and a pair {u, z} ∈ V × V (the primal and the

dual solution) ful�lls

A′(u)(φ, z) = J ′(u)(φ),

A(u)(ψ) = F (ψ),
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for all test functions {φ, ψ} ∈ V × V, there holds the error representation

J(u)− J(uh) =
1

2
ρ(uh)(z − ψh) +

1

2
ρ∗(uh, zh)(u− φh) +R

(3)
h

for arbitrary ϕh, ψh ∈ Vh. The primal and dual residuals are

ρ(uh)(·) := F (·)−A(uh)(·),

ρ∗(uh, zh)(·) := J ′(uh)(·)−A′(uh)(·, zh),

and the remainder is cubic in the primal and dual errors e := u− uh and e∗ := z − zh:

R
(3)
h =

1

2

∫ 1

0

{
J ′′′(uh + se)(e, e, e)−A′′′(uh + se)(e, e, e, zh + se∗)

− 3A′′(uh + se)(e, e, e∗)
}
s(1− s) ds

The derivative

A′(u)(φ, z) := lim
τ 6=0,τ→0

τ−1
{
A(u+ τφ)(z)−A(u)(z)

}
is the so-called Gâteaux derivative with respect to u. To apply Theorem 1, we require that the output
functional J is three-times di�erentiable.

In view of Theorem 1 and summing up both equations, problem (9) is equivalent to: Find u =
{u0, u1} ∈ X × X with

A((u)(ϕ)) := ((∂tu
0, ϕ0))−A2((u)(ϕ0)) + ((∂tu

1, ϕ1)) +A1((u)(ϕ1))

+
(
u0(0), ϕ0,−

0

)
G

+
(
u1(0), ϕ1,−

0

)
G

=
(
u0

0, ϕ
0,−
0

)
G

+
(
u1

0, ϕ
1,−
0

)
G

=: F (ϕ) (16)

for all test functions ϕ = {ϕ0, ϕ1} ∈ X × X . The error of the output functional can be represented as

J(u)− J(ukh) = J(u)− J(uk) + J(uk)− J(ukh).

Applying Theorem 1 and neglecting the remainder terms, this may be rewritten as

J(u)− J(uk) ≈
1

2

(
ρ(uk)(z − z̃k) + ρ∗(uk, zk)(u− ũk)

)
,

J(uk)− J(ukh) ≈ 1

2

(
ρ(ukh)(zk − z̃kh) + ρ∗(ukh, zkh)(uk − ũkh)

)
.

The functions {ũk, z̃k} ∈
(
X̃ rk × X̃ rk

)
×
(
X̃ rk × X̃ rk

)
and {ũkh, z̃kh} ∈

(
X̃ r,skh × X̃

r,s
kh

)
×
(
X̃ r,skh × X̃

r,s
kh

)
can

be chosen arbitrarily.

Because the functions ũk, z̃k, ũkh ad z̃kh can be chosen arbitrarily, the so-called weights u − ũk and
z−z̃h are essentially interpolation errors and we approximate these errors by higher order reconstruction
from the discrete solutions. Therefore, we introduce the operators Πk and Πh, which map computed
solutions to approximations of the interpolation errors:

z − zk ≈ Πkzk, u− uk ≈ Πkuk,

zk − zkh ≈ Πhzkh, uk − ukh ≈ Πhukh.
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We use a patch-wise higher-order interpolation: in time piece-wise quadratic interpolation,

Πkuk := I
(2)
2k uk − uk

and in space

I
(2l)
2h : V lh → V2l

2h, Πhukh := I
(2l)
2h ukh − ukh.

We recall our assumption that the underlying mesh consists of patches. The piece-wise quadratic
interpolation operator in time can be explicitly written:

I
(2)
2k v(t) :=

(tm − t)(tm+1 − t)
km(km + km+1)

v(tm−1) +
(t− tm−1)(tm+1 − t)

kmkm+1
v(tm) +

(t− tm−1)(tm − t)
(km + km+1)km+1

v(tm+1)

for t ∈ (tm−1, tm+1]. For the practical evaluation of the derived error estimator, we approximate the
semidiscrete solutions uk, zk by the fully discrete ones:

ρ(uk)(z − zk) ≈ ρ(ukh)(Πkzkh),

ρ∗(uk, zk)(u− uk) ≈ ρ∗(ukh, zkh)(Πkukh),

and we get at an error representation of the form

J(u)− J(ukh) ≈ ηk + ηh,

where

ηk :=
1

2

(
ρ(ukh)(Πkzkh) + ρ∗(ukh, zkh)(Πkukh)

)
,

ηh :=
1

2

(
ρ(ukh)(Πhzkh) + ρ∗(ukh, zkh)(Πhukh)

)
are the contributions of the temporal and the spatial discretization errors.

The dual problem

The evaluation of the error indicators requires the calculation of residuals involving the derivative
A′(uh)(u− φh, zh). For the derivative of the functional, we introduce the following notation:

J ′(u)(ϕ) = j1(u)(ϕ0) + j2(u)(ϕ1), ϕ = {ϕ0, ϕ1} ∈ X × X .

De�ning the space-time semilinear forms

B1((u)(φ, z)) :=

∫ T

0
B1(u)(φ, z) dt, B2((u)(φ, z)) :=

∫ T

0
B2(u)(φ, z) dt,

with Bj : V × V × V × V × V → R, j = 1, 2,

B1(u)(φ, z) :=
1

2

(
∇φ,∇z0

)
+
(
φ, V z0

)
−
(
φ, 2f ′(|u|2)(u1z0 − u0z1)u1 + f(|u|2)z0

)
− Ω

(
φ,L(∇)z1

)
,

B2(u)(φ, z) :=
1

2

(
∇φ,∇z1

)
+
(
φ, V z1

)
−
(
φ, 2f ′(|u|2)(u0z1 − u1z0)u0 + f(|u|2)z1

)
+ Ω

(
φ,L(∇)z0

)
,
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the derivative of the variational form in (16) can be computed to:

A′((u)(ϕ, z)) = ((∂tϕ
0, z0)) +B2((u)(ϕ0, z)) + ((∂tϕ

1, z1))−B1((u)(ϕ1, z))

+
(
ϕ0(0), z0(0)

)
+
(
ϕ1(0), z1(0)

)
for all ϕ = {ϕ0, ϕ1} ∈ X × X . We see that the variational problem for computing the dual solution
z = {z0, z1} ∈ X × X reads

((∂tϕ
0, z0)) +B2((u)(ϕ0, z)) +

(
ϕ0(0), z0(0)

)
= j1(u)(ϕ0),

((∂tϕ
1, z1))−B1((u)(ϕ1, z)) +

(
ϕ1(0), z1(0)

)
= j2(u)(ϕ1),

for all ϕ = {ϕ0, ϕ1} ∈ X × X . Integrating by parts in each time interval leads to

−((ϕ0, ∂tz
0)) +

(
ϕ0(t), z0(t)

)∣∣∣∣t=T
t=0

+B2((u)(ϕ0, z)) +
(
ϕ0(0), z0(0)

)
= j1(u)(ϕ0),

−((ϕ1, ∂tz
1)) +

(
ϕ1(t), z1(t)

)∣∣∣∣t=T
t=0

−B1((u)(ϕ1, z)) +
(
ϕ1(0), z1(0)

)
= j2(u)(ϕ1),

and we arrive at the following form for dual variational problem: Find a solution z = {z0, z1} ∈ X ×X
satisfying

−((ϕ0, ∂tz
0)) +B2((u)(ϕ0, z)) +

(
ϕ0(T ), z0(T )

)
= j1(u)(ϕ0),

−((ϕ1, ∂tz
1))−B1((u)(ϕ1, z)) +

(
ϕ1(T ), z1(T )

)
= j2(u)(ϕ1),

(17)

for all ϕ = {ϕ0, ϕ1} ∈ X × X . We de�ne the operator for the dual problem to

B1(u)(z) := −1

2
∆z0 + V z0 −

(
2f ′(|u|2)(u1z0 − u0z1)u1 + f(|u|2)z0

)
−ΩL(∇)z1,

B2(u)(z) := −1

2
∆z1 + V z1 −

(
2f ′(|u|2)(u0z1 − u1z0)u0 + f(|u|2)z1

)
+ ΩL(∇)z0,

and the equations determining the dual solution read:

−∂tz0 + B2(u)(z) = 0,

−∂tz1 −B1(u)(z) = 0,
x ∈ G, t ∈ I,

with terminal conditions

z0(x, T ) = j1(u(T )), z1(x, T ) = j2(u(T )), x ∈ G.

The dual problem is a modi�ed system of Schrödinger's type but running back in time and involving
of the primal solution. That makes it di�cult to solve. First, one has to solve the primal system for
all time steps and then one has to go backwards in time and compute the dual solutions. The dual
solution transports information backwards in time. This especially means that one has to store the
primal solution for all time steps, at least as long as one has not computed the dual solution for this
time step.
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Explicit form of error bounds

The last step to obtain a cell-wise error estimator which can be used for mesh re�nement is the
localization of the error bounds to time and space cells. We start with the computation of the temporal
contributions

ηk =
M∑
m=1

ηmk =
1

2

(
ρ(ukh)(Πkzkh) + ρ∗(ukh, zkh)(Πkukh)

)
with

ρ(ukh)(Πkzkh) = −
M∑
m=1

∫
Im

{(
∂tu

0
kh(t),Πkz

0
kh(t)

)
−A2

(
ukh(t)

)(
Πkz

0
kh(t)

)

+
(
∂tu

1
kh(t),Πkz

1
kh(t)

)
+A1

(
ukh(t)

)(
Πkz

1
kh(t)

)}
dt

and

ρ∗(ukh, zkh)(Πkukh) = j1(ukh)(Πku
0
kh) + j2(ukh)(Πku

1
kh)

−
M∑
m=1

∫
Im

{
−
(
Πku

0
kh(t), ∂tz

0
kh(t)

)
+B2

(
ukh(t)

)(
Πku

0
kh(t), zkh(t)

)
−
(
Πku

1
kh(t), ∂tz

1
kh(t)

)
−B1

(
ukh(t)

)(
Πku

1
kh(t), zkh(t)

)}
dt

We approximate the temporal integrals involving ujkh and zjkh by the trapezoidal rule whereas those

involving the quadratic terms I(2)
2k u

j
kh and I

(2)
2k z

j
kh are evaluated with the three-point Newton-Côtes

quadrature rule (Simpson's rule). We use the notation

U jm(x) := ujkh(x, tm), Zjm(x) := zjkh(x, tm),

the point tm−1/2 := 1
2(tm−1 + tm) is the midpoint of the time interval and

U jm−1/2(x) :=
1

2

(
U jm−1(x) + U jm(x)

)
, Zjm−1/2(x) :=

1

2

(
Zjm−1(x) + Zjm(x)

)
for j ∈ {0, 1}. The solutions uk and zk are (piecewise) linear polynomials in time and the function
value at the midpoint tm−1/2 is the average. We outline how to compute the integrals. For two scalar
functions φ, ψ, linear in the interval Im, the three-point Newton-Cotes quadrature rule leads to∫

Im

φ(t)I
(2)
2k ψ(t) dt =

km
6

(
φ(tm−1)I

(2)
2k ψ(tm−1) + 4φ(tm−1/2)I

(2)
2k ψ(tm−1/2) + φ(tm)I

(2)
2k ψ(tm)

)
.

At the end points of the interval, there holds

I
(2)
2k ψ(tm−1) = ψm−1, I

(2)
2k ψ(tm) = ψm,

and the value at the midpoint,

ψ̃m−1/2 := I
(2)
2k ψ(tm−1/2),
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can be computed from the de�nition of the interpolation operator: If m− 1 ∈ 2N, we have

ψ̃jm−1/2 =
(km + 2km+1)

4(km + km+1)
ψjm−1 +

(km + 2km+1)

4km+1
ψm −

kmkm
4(km + km+1)km+1

ψm+1,

if m ∈ 2N, we have

ψ̃jm−1/2 = − kmkm
4km−1(km−1 + km)

ψjm−2 +
(2km−1 + km)

4km−1
ψjm−1 +

(2km−1 + km)

4(km−1 + km)
ψjm.

Putting all this together shows∫
Im

φ(t)Πkψ(t) dt =
km
3

(
2φm−1/2ψ̃m−1/2 − φm−1ψm−1 − φmψm

)
.

The integrals involving derivatives in time calculate to∫
Im

(
∂tφ,Πkψ

)
dt =

1

3

(
2
(
φm − φjm−1, ψ̃m−1/2

)
−
(
φm − φm−1, ψm−1 + ψm

))
,

We put

dmU
j
m =

U jm − U jm−1

km
, dmZ

j
m =

Zjm − Zjm−1

km
,

and using the previous calculations, the temporal error indicators have the explicit representation

ηmk =
1

2

km
3

{
1∑
j=0

{(
2Ũ jm−1/2 − U

j
m−1 − U

j
m, dmZ

j
m

)
−
(
dmU

j
m, 2Z̃

j
m−1/2 − Z

j
m−1 − Z

j
m

)}

+

{(
2A2(Um−1/2)

(
Z̃0
m−1/2

)
−
(
A2(Um−1)(Z0

m−1) +A2(Um)(Z0
m)
))

−
(

2A1(Um−1/2)
(
Z̃1
m−1/2

)
−
(
A1(Um−1)(Z1

m−1) +A1(Um)(Z1
m)
))

+
(

2j1(Um−1/2)(Ũ0
m−1/2)− j1(Um−1)(U0

m−1)− j1(Um−1/2)(U0
m)
)

+
(

2j2(Um−1/2)(Ũ0
m−1/2)− j2(Um−1)(U0

m−1)− j2(Um−1/2)(U0
m)
)

+
(

2B1(Um−1/2)(Ũ1
m−1/2, Zm−1/2)−

(
B1(Um−1)(U1

m−1, Zm−1) +B1(Um)(U1
m, Zm)

))
−
(

2B2(Um−1/2)(Ũ0
m−1/2, Zm−1/2)−

(
B2(Um−1)(U0

m−1, Zm−1) +B2(Um)(U0
m, Zm)

))}}
.

The next step is the calculation of the spatial contributions

ηh =

M∑
m=0

ηmh =
1

2

(
ρ(ukh)(Πhzkh) + ρ∗(ukh, zkh)(Πhukh)

)
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which reads

ηh =
M∑
m=0

ηmh =
1

2

((
u0

0 − U0
0 ,ΠhZ

0
0

)
+
(
u1

0 − U1
0 ,ΠhZ

1
0

))

+
1

2

M∑
m=1

km
2

{
1∑
j=0

{(
ΠhU

j
m−1/2, dmZ

j
m

)
−
(
dmU

j
m,ΠhZ

j
m−1/2

)}

+

{
A2(Um−1)(ΠhZ

0
m−1) +A2(Um)(ΠhZ

0
m)−A1(Um−1)(ΠhZ

1
m−1)−A1(Um)(ΠhZ

1
m)K

}

+

{
+j1(Um−1)(ΠhZ

0
m−1) + j1(Um)(ΠhZ

0
m) + j2(Um−1)(ΠhZ

1
m−1) + j2(Um)(ΠhZ

1
m)

}

+

{
B1(Um−1)(ΠhU

1
m−1, Zm−1

)
+B1(Um)(ΠhU

1
m, Zm

)
−B2(Um−1)(ΠhU

0
m−1, Zm−1)−B2(Um)(ΠhU

0
m, Zm)

}}
.

As mentioned previously, we see here that the spatial error indicators depend linearly on the time step
length. To get error indicators which can be used for mesh re�nement, this spatial contributions have
to be localized further. As widely discussed in the literature, there exist several strategies. Here we
follow a standard procedure leading to cell-wise contributions and we refer to [10], [7] and the literature
cited there for more details. Summing up over all cells,

M∑
m=0

ηmh =
M∑
m=0

∑
K∈Tmh

ηmh,K ,

we integrate by parts on each single cell. In the spatial semilinear forms this approach leads to
contributions

A2−j(ukh)(ϕj)
∣∣∣
K

= −1

2

(
∆u1−j

kh , ϕj
)
K

+
(
V u1−j

kh , ϕj
)
K
−
(
f
(
|uh|2

)
u1−j
kh , ϕj

)
K

+ (−1)jΩ
(
L(∇)ujkh, ϕ

j
)
K

+
1

2

(
∇nu1−j

kh , ϕj
)
∂K

=
(
A2−j(ukh), ϕj

)
K

+
1

4

(
[∇nu1−j

kh ], ϕj
)
∂K
, j ∈ {0, 1}.

Here,
[
∇nukh

]
:=
(
∇ukh|∂K′∩Γ − ∇ukh|∂K∩Γ

)
· n denotes the jump of the gradient ∇ukh across a

common cell interface Γ of two neighbor cells K,K ′ ∈ Th into the direction of the normal unit vector
n pointing from K to K ′. The cell-wise spatial error contributions can be computed now from the
representations

(
A2(Um)(ΠhZ

0
m)−A1(Um)(ΠhZ

1
m)
)∣∣∣
K

=
(
A2(Um),ΠhZ

0
m

)
K
−
(
A1(Um),ΠhZ

1
m

)
K

+
1

4

{(
[∂nU

1
m],ΠhZ

0
m

)
∂K\∂G −

(
[∂nU

0
m],ΠhZ

1
m

)
∂K\∂G

}



15

(
B1(Um)(ΠhU

1
m, Zm

)
−B2(Um)(ΠhU

0
m, Zm)

)∣∣∣
K

=
(
B1(Um)(Zm),ΠhU

1
m

)
K

−
(
B2(Um)(Zm),ΠhU

0
m

)
K

+
1

4

{(
[∂nZ

0
m],ΠhU

1
m

)
∂K\∂G −

(
[∂nZ

1
m],ΠhU

0
m

)
∂K\∂G

}
for m ≥ 1.

Discretization re�nement strategy

Adaptive mesh re�nement in time and space always has the goal to reduce the temporal and spatial
parts of the discretization errors. This can be done by re�ning both discretizations as long as the
corresponding error contribution is larger than half of a given tolerance to reach

J(u)− J(ukh) ≈ ηk + ηh ≈ TOL

but this may need many rounds of mesh re�nement. We follow a strategy presented in [20] which
balances the temporal and spatial discretization error parts:

|ηk| ≈ |ηh|.

For an e�cient equilibrated reduction of the di�erent error parts the temporal error indicators have to
be independent of the spatial error indicators and vice versa. This is the case for

ηk =
M∑
m=1

ηmk , ηh =
M∑
m=0

ηmh ,

but the local contributions

ηmh =
∑
K∈Tmh

ηmh,K

depend linearly on the time step size km of the interval Im as we have seen in the last section. The
spatial contributions would decrease, if the time step size decrease but the spatial discretization is
�xed. To overcome this, we introduce a reference time step and introduce the error contributions

η̃mh,K :=
T

M

1

km
ηmh,K , K ∈ Tmh , m = 0, . . . ,M.

This leads to two sets of error indicators which can be used for mesh re�nement:

{
|ηmk | : m = 1, . . . ,M

}
,

M⋃
m=0

{
|η̃mh,K | : K ∈ Tmh

}
There are many di�erent strategies how these error indicators can used for the decision which of the
cells have to be re�ned, see e.g. [12]. We use a "�xed-number" strategy, which means that we re�ne
as many cells as we reach some given growth rate of the meshes.

The adaptive re�nement algorithm presented in [20] introduces an equilibration factor c for the de-
cision which of the discretization has to be re�ned in each adaptation cycle. This factor has to be
chosen carefully. If c is chosen too small, the reduction of the error is slow, because only one dis-
cretization is re�ned although both error parts are of the same size. On the other hand, if c is chosen
too large, both discretizations will be re�ned although one part of the error dominates the overall error.
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Algorithm 1: Adaptive re�nement algorithm
Data: Initial temporal discretization Tk0 and spatial meshes Tmh0 .
begin

Set n = 0.

while |η| > TOL and
∑Mn

m=0Nm < Nmax do
Compute primal and dual solutions uknhn and zknhn .
Evaluate the error indicators ηkn and ηhn .
if |ηkn | > c|ηhn | then

Re�ne temporal discretization.
else if |ηhn | > c|ηkn | then

Re�ne spatial discretization.

else if 1
c ≤

|ηkn |
|ηhn |

≤ c then
Re�ne temporal and spatial discretizations.

end
Increase n = n+ 1.

end

end

Running several tests show, that a good choice for the equilibration constant is c ≈ 4. The algorithm
which is presented below stops, if the error |η| = |ηk + ηh| reaches some given tolerance or if the
number of degrees of freedom reaches a maximal value Nmax, which should be determined by the given
computer resources.
The presented algorithm is costly when bringing back to mind that in each round of re�nement many
�nite element solutions have to be computed. As mentioned in a previous section, the computed error
indicators give a posteriori error bounds for the functional value of interest. These cell-wise indicators
point to cells which have to be re�ned in order to reduce the overall error. But there is no information
in these indicators how much the overall error is being reduced by re�ning a special cell. It is only
possible to evaluate these error bounds, re�ne the cells where these indicators are largest and start a
new round until a given precision is not reached. This process is expensive and usually needs several
rounds of re�nement. But even if computing so many �nite element solutions is expensive, we have an
error bound for the functional value and only the parts of the time and space disrectizations are being
re�ned, which contribute to the overall error. This is the main bene�t over a classical time stepping
method.

4. Examples

All the numerical examples presented in this section have been calculated using a program based on
the open source C++ �nite element library deal.II. For more details see [6] and the project website
http://www.dealii.org.

The Schrödinger equation preserves energy and mass and using the energy as control functional is
a very good indicator to show that the re�nement scheme works. Computing the energy functional
E
(
u(T )

)
at the end of the time interval, we see that the derivative used in the dual problem is

J ′
(
u
)
(ϕ) = E′

(
u(T )

)
(ϕ) = A1

(
u(T )

)
(ϕ0) +A2

(
u(T )

)
(ϕ1)

We present results for cG(1)cG(2) disrectizations and leave other combinations for future work. In each
time step we use a BiCGstab linear solver [23] combined with an algebraic multigrid preconditioner
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[19], [24], [21] for computing explicit stages, which involve only the mass matrix here. For implicit
stages we use Newton's method and compute solutions of linear systems also with a BiCGstab solver.
The used criterion for stopping the Newton iteration is a defect of 1.00 · 10−8. It turned out that in
combination with SOR preconditioning with ω = 1 this was reached in some few steps in all shown
results. The ordering was optimized for the preconditioner and the algorithm of Cuthill
and McKee was used with deal.II.

4.1 Ground state solutions

As a �rst example, we consider the framework given in [9]. We start with a ground state solution
as initial value and compute the wave solution of the Gross-Pitaevskii equation with a harmonic trap
potential in two dimensions:

i∂tu = −ε
2

2
∆u+ V u+ β|u|2u, V (x) =

1

2

(
γ2

1x
2
1 + γ2

2x
2
2

)
, G ⊂ R2.

If the nonlinearity vanishes, β = 0, one can directly calculate [9] that a ground state is given by

u(x, t) = e−iµtΦ(x), Φ(x) =
1√
π

(γ1γ2)1/4e−
γ1x1

2+γ2x2
2

2 , µ =
1

2
(γ1 + γ2). (18)

We set β = 0, γ1 = γ2 = 1 and choose the domain G = [−10, 10]× [−10, 10] together with T = 1 and
before presenting results showing the equilibration of the time and space errors we give a numerical
justi�cation for splitting the total discretization error into temporal and spatial parts in Table 1 for
cG(1)cG(2) discretizations. With Nm we denote the number of degrees of freedom of the space dis-
cretization at time point m, N :=

∑M
m=0Nm is the overall number and Nmax = maxNm the maximal

number of degrees of freedom of the space discretizations. Table 1 demonstrates the independence of
the two parts of the error estimator on the re�nement of the other part. Remember that ηh represents
space errors and ηk time error.

M Nmax |ηh| |ηk|
cG(1) cG(2) cG(1) cG(2)

10 2, 178 6.0072 · 10−04 2.6357 · 10−05

20 2, 178 6.1328 · 10−04 3.9285 · 10−05

40 2, 178 6.1740 · 10−04 3.5041 · 10−05

80 2, 178 6.1839 · 10−04 3.3185 · 10−05

160 2, 178 6.1866 · 10−04 3.3501 · 10−05

10 2, 178 1.4976 · 10−03 1.4976 · 10−03

10 8, 450 1.3943 · 10−03 1.3943 · 10−03

10 33, 282 1.3704 · 10−03 1.3704 · 10−03

10 132, 098 1.3646 · 10−03 1.3646 · 10−03

10 526, 338 1.3631 · 10−03 1.3632 · 10−03

Table 1: Example 1: Independence of the temporal and the spatial part of the error estimator

Next we present the results obtained using the equilibration algorithm. We choose the equilibration
factor c = 4 and a fraction of 25% of all space cells for re�nement in space and 50% of all time cells
for re�nement in time. If the algorithm provides re�nement in time and space, we choose half of both
fractions. The ground state ful�llsM(Φ) = 1 and the energy can be computed to E(Φ) = 1

2µ‖Φ‖
2 = 1

2 .
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With M(ukh) and E(ukh) we denote the computed mass and energy, respectively.
As the results in Table 2 show, the algorithm needs 9 adaptation cycles to reach an error |η| < 1.00·10−04

with the cG(1)cG(2) method. We want to remark that the error indicators are computed for the energy
functional and that there is no guarantee that the error in the mass also diminishes in each re�nement
step. Figure 1 shows that the dynamic re�nement in time. As we expect the re�nement in time has
many ups and downs and the algorithm re�nes only time steps where it is needed. Because we compute
a ground state, the wave evolution is not interesting and we only show one picture of the solution and
the space discretization at t = 0.5 in Figure 2.

M N Nmax |M(ukh)−M(Φ)| |E(ukh)− E(Φ)| |ηh| |ηk|

10 92, 950 8, 450 1.00 · 10−04 1.93 · 10−04 2.64 · 10−05 1.37 · 10−03

16 143, 650 8, 450 1.00 · 10−04 1.93 · 10−04 4.07 · 10−05 4.89 · 10−04

25 219, 700 8, 450 1.00 · 10−04 1.93 · 10−04 4.41 · 10−05 2.25 · 10−04

38 329, 550 8, 450 1.00 · 10−04 1.93 · 10−04 3.86 · 10−05 8.76 · 10−05

48 577, 474 12, 610 2.81 · 10−05 1.51 · 10−04 6.74 · 10−04 9.30 · 10−04

61 1, 060, 396 19, 714 3.43 · 10−04 1.35 · 10−04 3.90 · 10−04 4.28 · 10−04

77 1, 904, 004 27, 754 7.22 · 10−05 3.18 · 10−05 1.40 · 10−04 7.60 · 10−05

97 3, 516, 580 49, 282 1.71 · 10−05 5.44 · 10−06 1.52 · 10−04 8.55 · 10−05

122 6, 616, 966 82, 250 5.24 · 10−06 1.59 · 10−06 7.84 · 10−05 3.97 · 10−05

153 12, 264, 044 139, 082 2.85 · 10−06 3.33 · 10−07 5.41 · 10−05 2.47 · 10−05

Table 2: Example 1: Dynamic mesh re�nement with equilibration

Figure 1: Example 1: Dynamic re�nement in time for the ground state.

4.2 Adding a repulsive interaction and angular momentum

Now we add a repulsive interaction to the Gross-Pitaevskii by setting β = 5. We start with the ground
state solution (18) with µ = 1 as initial value, normalized to ‖u0‖2 = 1 and extend the time interval
to T = 3 to see the repulsion. For better comparison, we always run eight adaptation cycles in the
following examples.
The adaptive algorithm starts with re�nement in time as one can see from Table 3. After four re�nement
steps in time also the space meshes are re�ned further. The equilibration of the spatial and temporal
parts of the error estimator can be clearly seen. The computed energy after eight rounds of adaptation
is E(ukh) = 0.698839 with an error estimate |η| < 1.3068 · 10−03, the mass is conserved up to four
digits.
What we see from the picture below in Figure 3 and also in the following examples is, that the number
of degrees of freedom always grows with time. As mentioned in a previous chapter, if we add a new
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Figure 2: Example 1: mass |u|2 and dynamically re�ned mesh, t = 0.5

time step, we always insert a union of the meshes from the neighbor time steps in order to realize
dynamical mesh re�nement. The mesh in an inserted time step is the set of the �nest cells from both
neighbor time step. A new space grid is always �ner and, even if it is possible that the mesh will be
getting coarser in a later step, the number of degrees of freedom has the tendency to grow with time.
We do not see a way to overcome when allowing dynamic mesh re�nement.

M N Nmax M(ukh) E(ukh) |ηh|+ |ηk| |ηh| |ηk|

30 261, 950 8, 450 1.000363 0.699355 6.48 · 10−02 1.24 · 10−03 6.36 · 10−02

46 397, 150 8, 450 1.000121 0.698994 2.63 · 10−02 1.55 · 10−03 2.48 · 10−02

70 599, 950 8, 450 1.000016 0.698917 1.34 · 10−02 1.85 · 10−03 1.15 · 10−02

106 904, 150 8, 450 1.000039 0.698934 7.11 · 10−03 2.23 · 10−03 4.88 · 10−03

133 1, 572, 892 13, 218 1.000053 0.699076 4.98 · 10−03 1.79 · 10−03 3.19 · 10−03

167 2, 845, 136 21, 122 0.999459 0.698387 3.19 · 10−03 1.06 · 10−03 2.14 · 10−03

209 5, 112, 268 32, 178 0.999790 0.698688 2.20 · 10−03 8.67 · 10−04 1.34 · 10−03

262 9, 145, 566 54, 562 0.999935 0.698839 1.31 · 10−03 4.56 · 10−04 8.51 · 10−04

Table 3: Example 2: Dynamic mesh re�nement with equilibration, β = 5, Ω = 0

In the next step we add angular momentum and set Ω = 1, so called slow speed. The behavior of
the adaptive algorithm and the resulting dynamically re�ned meshes as well as the obtained results in
Table 4 only change slightly. The adaptive re�ned meshes in space �follow� the rotation of the system,
as one can see from Figure 11, but the rotation has only a minor in�uence here.

4.3 Comparison with adaptive methods

Checking the literature, we considered [1] as a similar approach, where a the fully discrete Galerkin
method with �xed point iterations for nonlinearities is given. To compare with our algorithm, we im-
plemented a rotational version using the software package FreeFem++, see http://www.freefem.org,
To compare it with time adaptive mesh, we must choose �xed time steps. From Figure 3, we choose
the three most common values ∆t = 0.025, 0.0125, 0.00625, which corresponds to M = 120, 240, 480.
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Figure 3: Example 2: Dynamic re�nement in time with repulsive element.

M N Nmax M(ukh) E(ukh) |ηh|+ |ηk| |ηh| |ηk|

30 261, 950 8, 450 1.000363 0.699355 6.48 · 10−02 1.22 · 10−03 6.36 · 10−02

46 397, 150 8, 450 1.000122 0.698994 2.63 · 10−02 1.52 · 10−03 2.48 · 10−02

70 599, 950 8, 450 1.000016 0.698917 1.34 · 10−02 1.89 · 10−03 1.16 · 10−02

106 904, 150 8, 450 1.000039 0.698934 7.12 · 10−03 2.24 · 10−03 4.88 · 10−03

133 1, 587, 532 13, 314 0.998848 0.697978 5.21 · 10−03 1.99 · 10−03 3.22 · 10−03

167 2, 878, 008 21, 506 0.999501 0.698312 3.22 · 10−03 1.15 · 10−03 2.08 · 10−03

209 5, 143, 108 32, 130 0.999835 0.698730 2.21 · 10−03 8.87 · 10−04 1.33 · 10−03

262 9, 022, 258 53, 826 0.999934 0.698833 1.38 · 10−03 5.57 · 10−04 8.25 · 10−04

Table 4: Example 3: Dynamic mesh re�nement with equilibration, β = 5, Ω = 1

To re�ne the mesh, we �rst adapt it up to error 1.2068 × 10−03 and next we use the �xed point step
with error 10−07 to approximate the nonlinearities. Table 5 shows the total number of triangles N ,
the maximum number of triangles in time Nmax, mass and energy minimum values and average errors.
The detailed numerical behavior given by the adaptive time mesh are not shown, but we will describe
it in each case.

∆t N Nmax minMa(uk) minEa(uk) |M(ukh)−Ma(uk)| |E(ukh)− Ea(uk)|

0.02500 2,143,240 17, 983 1.002531 0.692712 1.36 · 10−04 7.42 · 10−03

0.01250 4,297,525 17, 984 1.002483 0.692493 1.24 · 10−04 8.13 · 10−04

0.00625 8,598,781 17, 984 1.000023 0.692366 1.31 · 10−04 1.51 · 10−03

Table 5: Example 3: Adaptive mesh re�nement comparison , β = 5, Ω = 1

The results are the following. For ∆t = 0.025, the adaptive method has N = 2, 143, 240 elements and
Nmax = 17, 978 for all time steps except from two outliers: t = 0.000 and at t = 2.225. In case of mass,
its value is also almost steady in time steps at 1.00268 with an error of 10−04, except for an outlier at
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Figure 4: Example 3: Dynamic re�nement in time with nonsymmetrical potential.

Figure 5: *
t = 0.00

Figure 6: *
t = 0.75

Figure 7: *
t = 1.45

Figure 8: *
t = 1.55

Figure 9: *
t = 2.25

Figure 10: *
t = 3.00

Figure 11: Example 3: Dynamically re�ned meshes, β = 5, Ω = 1
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Figure 12: *
t = 0.00

Figure 13: *
t = 0.75

Figure 14: *
t = 1.45

Figure 15: *
t = 1.55

Figure 16: *
t = 2.25

Figure 17: *
t = 3.00

Figure 18: Example 3: mass |u|2, β = 5, Ω = 1
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0.575. The energy increases from 1.20472 up to 1.33816 and then decrease to 1.23923 for t = 3.0. Its
error oscillates with the worst case with 2× 10−03 decreasing to 10−03 and an average of 7× 10−04.
For ∆t = 0.0125, Nmax has a similar behavior: two outliers at t = 0.000 and t = 0.2875, the re-
maining time steps about 17, 978, and a total element number of N = 4, 297, 252. Mass is about
1.00248 and its error oscillates about 5× 10−04 with few cases over 10−03. Energy behaves similarly to
case ∆t = 0.025, since it starts at 1.20529 and increases up to 1.35123 and then decreases to 1.22454
at t = 3.00. Errors also have an oscillating behavior about 7×10−04 with several cases with error 10−03.
Finally, for ∆ = 0.00625, Nmax oscillates about 17, 970 with four outliers, t = 0.000, t = 0.70625, 0.75625
and 0.081875. The total number of elements rises to N = 8, 598, 781. Mass follows the same previous
behavior with errors about 5× 10−05. For the energy, we also detect small oscillating values about the
trend with errors about 10−03.
In summary, we can see that energy and mass do not improve its value using the time and mesh re-
�nement given in the previous section. Also, errors do not decrease for the increasing number of DoF,
which is almost four times given by the time re�nement. From Table 2, we can see that for values about
M = 120 and N = 2, 143, 240 we get lower errors for mass and energy. It seems that mesh error ηh is
leading the energy and mass error like in Table 2. We have not tested the relation between adapta-
tion and errors, but we see that under higher mesh elements N , energy and mass error did not improve.

Comparing the case M = 120 in Table 5 with M = 133 in Table 4, we obtain similar mass an energy
values, but with lower N . Now comparing the case M = 240 in Table 5 with M = 262 in Table 4, we
also get similar values but now with larger N . We have no comparison for M = 480 in in Table 4.

4.4 A nonsymmetric potential

We change the trap potential setting two di�erent weights

V (x) =
1

2

(
γ2

1x
2
1 + γ2

2x
2
2

)
, γ1 = 2, γ2 = 1.

The trap has the shape of an ellipse and after eight rounds of adaptation the computed energy is
E(ukh) = 1.031094 with an error estimate |η| < 4.2120 ·10−03. This error is a slightly larger error than
the previous example using about 300, 000 more DoF. See Table 6. Adding angular momentum Ω = 1,
it does not change the computed energy noteworthly, see Table 7. On the other hand, the adaptive
algorithm starts much earlier to re�ne not only in time but also in space. After eight adaptation cycles,
we use 14, 468, 680 to reach |η| < 1.1076 · 10−02. In comparison with Figure 19, the adaptation of the
time grid changes in Figure 20 following the rotation and the evolution of the wave intensity as we see
from Figure 27 and Figure 34.

M N Nmax M(ukh) E(ukh) |ηh|+ |ηk| |ηh| |ηk|

30 261, 950 8, 450 1.001806 1.034039 2.43 · 10−01 5.34 · 10−03 2.38 · 10−01

46 397, 150 8, 450 1.001837 1.033928 1.04 · 10−01 6.93 · 10−03 9.70 · 10−02

70 599, 950 8, 450 1.000479 1.032047 4.67 · 10−02 8.63 · 10−03 3.80 · 10−02

106 904, 150 8, 450 1.000104 1.031511 2.73 · 10−02 1.08 · 10−02 1.65 · 10−02

133 1, 578, 844 12, 834 0.999798 1.031270 1.52 · 10−02 3.70 · 10−03 1.15 · 10−02

167 2, 830, 464 19, 858 0.998370 1.028915 9.69 · 10−03 2.72 · 10−03 6.97 · 10−03

209 5, 056, 020 31, 650 0.999799 1.031001 6.79 · 10−03 2.31 · 10−03 4.49 · 10−03

262 9, 390, 422 50, 674 0.999883 1.031094 4.21 · 10−03 1.27 · 10−03 2.95 · 10−03

Table 6: Example 4: Dynamic mesh re�nement with equilibration, β = 5, Ω = 0, nonsymmetric
potential V
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Figure 19: Example 4: Dynamic re�nement in time

M N Nmax M(ukh) E(ukh) |ηh|+ |ηk| |ηh| |ηk|

30 261, 950 8, 450 1.004150 1.036606 2.41 · 10−01 3.80 · 10−02 2.03 · 10−01

46 397, 150 8, 450 1.002381 1.034183 1.28 · 10−01 4.68 · 10−02 8.09 · 10−02

58 698, 390 12, 674 0.999606 1.034444 1.04 · 10−01 3.35 · 10−02 7.05 · 10−02

73 1, 268, 180 23, 266 0.998627 1.030291 6.42 · 10−02 2.68 · 10−02 3.75 · 10−02

92 2, 304, 970 44, 098 1.000278 1.031683 4.13 · 10−02 1.61 · 10−02 2.52 · 10−02

116 4, 253, 482 73, 858 1.000131 1.031511 2.63 · 10−02 1.22 · 10−02 1.41 · 10−02

146 7, 934, 486 119, 954 1.000138 1.031506 1.67 · 10−02 8.49 · 10−03 8.21 · 10−03

183 14, 468, 680 184, 898 1.000085 1.031420 1.11 · 10−02 6.32 · 10−03 4.76 · 10−03

Table 7: Example 5: Dynamic mesh re�nement with equilibration, cG(1)cG(2), β = 5, Ω = 1
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Figure 20: Example 5: Dynamic re�nement in time

Figure 21: *
t = 0.00

Figure 22: *
t = 1.00

Figure 23: *
t = 1.50

Figure 24: *
t = 2.00

Figure 25: *
t = 2.50

Figure 26: *
t = 3.00

Figure 27: Example 5: Dynamically re�ned meshes, β = 5, Ω = 1
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Figure 28: *
t = 0.00

Figure 29: *
t = 1.00

Figure 30: *
t = 1.50

Figure 31: *
t = 2.00

Figure 32: *
t = 2.50

Figure 33: *
t = 3.00

Figure 34: Example 5: mass |u|2, β = 5, Ω = 1
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5. Summary and Outlook

In this paper we have presented a re�nement strategy for �nite element schemes in time and space
for nonlinear time-dependent Schrödinger equations. The re�nement algorithm is based on the dual
weighted residual method and an equilibration strategy for the temporal and spatial error estimators.
We have shown numerical results built on the deal.II library for the Gross-Pitaevskii equation with an
external harmonic trap potential V in a rotational frame and repulsive interaction.
There are di�erent directions for future work. The algorithm presented here does not depend on the
dimension of the underlying domain and also works in dimension three, but with higher computational
e�ort. Another important aspect is the parameter ε, which is much smaller than one in many problems.
Here the algorithm also works and some numerical tests show that the discretizations in time and space
are adapted as expected, but the computational e�ort is also much higher because of possible concen-
trations of the solution. Moreover, more adaptation rounds are needed than in the presented examples.
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