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Abstract. Nonlinear Schrödinger equations (NSE) model several important problems in
Quantum Physics and Morphogenesis. In case of singularly perturbed problems, the theory
have made interesting progress, but numerical methods have not been able to come up with
small values of the singular parameter ε. Moreover, the saddle-point characteristic of the
associated functional is another challenge that it was �rst studied by Choi & McKenna, who
developed the Mountain Pass Algorithm (MPA). We will focus on NSE where a uniqueness
result for ground-state solutions is obtained.
In this article, we develop a new method to compute positive mountain pass solutions,
which improves the results for a large range of singular parameters. We extend ideas
from MPA considering the singulary perturbed problems by developing a �nite element
approach mixed with steepest descend directions. We use a modi�ed line search method
based on Armijo's rule for improving the Newton search and Patankar trick for preserving
the positiveness of the solution. To improve the range of the singular parameter, adaptive
methods based on Dual Weighted Residual method are used. Our numerical experiments
are performed with the deal.II library and we show that it is possible to get solutions for
ε = 10−6 improving the current results in four order of magnitude. At this level, machine
precision must be considered for further studies.

Key Words: singularly perturbed Schrödinger problems, Patankar trick, dual weighted residual
method.

1. Introduction

Singularly perturbed nonlinear Schrödinger equations are very used models for understanding di�erent
physical and biological complex problems. Numerical methods have been developed to obtain more
precise solutions for understanding the nonlinear e�ect on the phenomena. For example, in quantum
mechanics particles at very low temperatures occupy the same low energy level behaving as a single large
atom, the so-called Bose-Einstein Condensation (BEC). Experimental evidence for 87Rb [AEM+95],
23Na [DMA+95] and 7Li [BSTH95] were obtained in 1995. From the Hamiltonian of the quantum �eld
operators, Gross [Gro61] and Pitaevskii [Pit61] considered the Mean Field Theory at low temperature
to derive the equation for the BEC
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ψ =

(
− ~2

2m
∆ +

m

2
Ṽ + g|ψ|2

)
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Here, ∆ denotes the Laplace operator. If the trapping potential Ṽ does not depend on time, we can
consider standing wave solutions φ to obtain the general solution ψ(x, t) = φe−iµt/~. The condensate
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φ is governed by the time independent nonlinear Schrödinger equation

µφ =

(
− ~2

2m
∆ +

m

2
Ṽ + g|φ|2

)
φ, (1)

where g re�ects a repulsive/attractive interaction if g > 0 or g < 0 respectively. A global minimum of
the repulsive functional represents the behavior of all particles in the system. On the other hand, for
attractive interactions, ground-state solutions corresponds to saddle points of changing sign function-
als [KSU03], [Kav03], which will require new numerical methods.
Also, soliton solutions for nonlinear optics are ground-states from quasi-monochromatic electromagnetic
wave solutions in a dieletric Kerr-type medium, which also are related with the nonlinear Schrödinger
equation. See [BL03] for a detailed formulation. Finally, pattern formation modeled by (1) for Ṽ con-
stant corresponds to the Turing model for morphogenesis. This phenomenon balances a time evolution
with a di�usion problem related with a polynomial chemical reaction. See [NW95] for more references.
The stationary solutions satisfy an equation like (1).
The main approach to compute numerical solutions is to gain a deep insight for understanding the mod-
els and their phenomena are methods related to ODE. In recent works, numerical methods involving
the solution of PDE were developed for computing ground-states for BEC, [AZ07], [ZAKPG07], [ZA-
KPG08] and [BT03], [BD04], [BCL06], [BCW10] with quadratic potential Ṽ , nonlinear Schrödinger
systems [GRPG01], [PGL03], [RSS09], [YL08], [Yan09] and nonlinear optics [BL03]. On the other hand,
for saddle points the seminal work of Choi & McKenna [CM93] develop a method based on the Moun-
tain Pass geometry of the associated functional to (1). Also in [CZN00] a new method is described and
compared with Choi & McKenna's algorithm. Based on these two results, Zhou developed a series of
algorithms for computing di�erent solutions of nonsingular problems [LZ01], [CEZ02], [WZ04], [YZ05].
The list of references presented here cannot be complete and for further information see also the cited
authors' works.

The problem in calculating the BEC numerically are the very small parameters in physical applications.
The atomic mass used in experiments with 87Rb [AEM+95] is m = 1.44× 10−25 kg and after inserting
Planck's constant, ~ = 1.05 · 10−34 J, and reordering the equation, the problem for the condensate
reads (

−ε2∆− V (x) +K(x)|φ|2
)
φ = 0 , (2)

with a parameter ε ≈ 5.0× 10−8 and positive potentials V and K. Why this is a challenging problem,
it can be seen from a result obtained by Ni & Wei in 1995 for constant potentials V = K = 1 on a
circle domain: for su�ciently small ε > 0 the ground-state solution of (2) is of spike-layer type with
support proportional to ε and concentrates at exactly one point x0. This especially means that the
numerical approximation scheme, for example �nite elements, must detect the concentration point and
a very small peak of the solution. This approach needs very e�cient adaptive mesh re�nement.

The focus of this work is to design e�cient and robust numerical algorithms to calculate positive so-
lutions of (3) with �nite energy, especially for small values of ε. We adapt ideas from the classical
Mountain Pass algorithm to solve singularly perturbed nonlinear Schrödinger equations, improving sig-
ni�cantly previous results considering smaller perturbations ε. In section 2 we explain the theoretical
framework for obtaining minimum energy solutions, called ground-states, and the Choi & McKenna
algorithm for computing mountain pass values. We assume throughout this paper that the potentials
V and K are bounded, positive C1 smooth functions such that a positive solution exists. We de-
velop our algorithm in section 3 based on �nite elements, line searching methods for Newton schemes,
Patankar trick for obtaining positive solutions, and adaptive mesh re�nement. Numerical solutions of
two problems are shown in section 4: one with constant potentials and the other with nonconstant
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potentials proving a result of locating peaks given by [WZ97]. In the �rst case, we found ground-states
for singular parameter as ε = 10−6 compared with ε = 10−1 in [Mon11], ε = 10−2 in [CZN00] and
ε = 10−3 in [XYZ12] with Neumann boundary conditions. We notice that results for energy levels and
especially estimates for the numerical error of such quantities get close to the machine precision for
smaller ε posing the question how to obtain reliable results for such problems.

2. Nonlinear elliptic problems and Mountain Pass algorithm

2.1 Variational setting and ground-state solutions

In this work we consider nonlinear elliptic equations of Schrödinger type:

−ε2∆u(x) = f(u;x), x ∈ Ω, (3)

where f(u;x) := −V (x)u(x) + K(x)|u(x)|p−1u(x) and Ω ⊂ Rn is a smooth and simple connected
domain, ε ∈ (0, 1) is a (small) parameter and 1 < p < +∞ for n = 2 and 1 < p < 5 for n = 3.
Throughout this paper, we assume that the potentials V and K are bounded, C1 smooth on Rn and

inf
x∈Rn

V (x) = V > 0, K(x) > 0 . (4)

We focus on positive solutions u ≥ 0 in Ω and we prescribe homogeneous Dirichlet conditions u = 0
on the boundary ∂Ω assuming that particles are all located inside the domain. Let Eε represent the
Hilbert subspace of H1

0 (Ω) with norm

‖v; Eε‖2 :=

∫
Ω

(
ε2|∇v|2 + V (x)v2

)
dx.

The energy functional corresponding to (3) is

Jε(u) :=
1

2

∫
Ω

(
ε2|∇u|2 + V (x)u2

)
dx− 1

p+ 1

∫
Ω
K(x)|u|p+1 dx. (5)

Under conditions (4), the energy functional is continuously di�erentiable. It is clear that solutions to
(3) correspond to critical points of Jε, i.e.

J ′ε(u)(v) = 0 for all v ∈ Eε .

J ′ε(u)( · ) and J ′′ε (u)( · , · ) denote the derivatives of Jε(u) of order one and two, respectively. Since
there is a canonical identi�cation between a Hilbert space and its dual, we always identify the Fréchet
derivative with its canonical dual. Consider the Nehari manifold

Mε :=

{
v ∈ Eε \ {0} :

∫
Ω

(
ε2|∇v|2 + V (x)v2

)
dx =

∫
Ω
K(x)|v|p+1 dx

}
. (6)

Any nontrivial solution of (3) in H1
0 (Ω) belongs to (6). The ground-energy associated with a ground-

state solution of (3) which minimizes Jε onMε is de�ned as

cε := inf
v∈Mε

Jε(v).

A breakthrough for the theory on the existence of solutions for such a wide class of problems as given
in (3) is the nowadays classical Mountain Pass Theorem by Ambrosetti & Rabinowitz [AR73]. For the
convenience of the reader we recall this important result. Assume that the functional J ∈ C1(H;R)
on a Hilbert space H satis�es the Palais-Smale compactness condition: each sequence (uk)k∈N ⊂ H
such that (J(uk))k∈N is bounded and J ′(uk)→ 0 in H, contains a subsequence which converges in H.
In addition, suppose that the topological shape of the energy functional over the underlying space H
satis�es:
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(a) J(0) = 0 (a low spot at zero),

(b) there exists a ring of mountains given by the constants r, a > 0 such that J(u) ≥ a if ‖u‖H = r,

(c) there exists a low spot beyond the mountains given by an element v ∈ H with ‖v‖H > r, J(v) < 0.

Let Γ be the set of all paths from the low spot at zero over the ring of mountains to the other low
spot (see also the de�nition (8) below), then the following result guarantees the existence of a so-called
mountain pass solution:

Theorem 1 (Mountain Pass [AR73]). The value

c := inf
g∈Γ

max
0≤t≤1

J(g(t))

is a critical value of J , namely there exists 0 6= u ∈ H such that

J(u) = c and J ′(u)(v) = 0 for all v ∈ H.

Under assumptions (4), the ground-energy is a mountain pass value associated with Jε in the sense
[WZ97]

cε = inf
v∈Mε

Jε(v) = inf
g∈Γε

max
0≤t≤1

Jε
(
g(t)

)
= inf

v∈Eε\{0}
max
t≥0

Jε(tv) (7)

where

Γε :=
{
g ∈ C

(
[0, 1]; Eε

)
: g(0) = 0, g(1) = v, Jε(v) ≤ 0

}
. (8)

2.2 Singularly perturbed problems

Singularly perturbed problems of type (3) were investigated by Wang & Zeng and many other authors.
Besides existence and regularity results, the behavior of solutions of (3) was investigated in several
works [Wan93], [NW95], [Gui96], [WZ97]. For constant potential functions V = K = 1 it was shown by
Ni & Wei [NW95] that a ground-state for ε→ 0 is a spike-layer solution concentrating at exactly one
point. To see the problems for numerical computations we recall Ni & Wei main results. Ground-state
solutions uε are bounded independently of ε and the integral over powers of ground-state solutions is
equivalent to ε2. Thus, we have

sup
x∈Ω

uε(x) ≤ C, mε2 ≤
∫

Ω
uε(x)3 dx ≤Mε2

where C,m,M are constants independent of ε. Moreover, ground-state solutions have spike-layer type
and do not vanish to zero with ε→ 0:

Theorem 2 (Ni & Wei [NW95]). There exists a constant u > 0 such that if uε attains a local

maximum at x0 ∈ Ω then uε(x0) ≥ u. There exist constants η0 and r0 independent of x0 and ε
such that if ε < ε0 and Br0ε(x0) ⊂ Ω, then uε(x) ≥ η0 for x ∈ Br0ε/2(x0).

Also with ε→ 0 the height of the peak at x0 does not shrink under some constant value and the shape
of the peak will only change in the diameter. For ε→ 0, the peak will concentrate at one point:

Theorem 3 (Ni & Wei [NW95]). For su�ciently small ε a ground-state solution uε has at most

one local maximum and it is achieved at exactly one point Pε ∈ Ω. There holds uε(· + Pε)→ 0 in

C1
loc(Ω \ Pε) and dist(Pε, ∂Ω)→ maxP∈Ω dist(P, ∂Ω) as ε→ 0.
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Moreover, the asymptotic behavior of the energy is known,

inf
v∈Mε

Jε(v) ≤ ε2
(
J(w) +O (1)

)
, ε→ 0, (9)

where

J(w) :=
1

2

∫
Rn

(
|∇w|2 + w2

)
dx− 1

p+ 1

∫
Rn

|w|p+1 dx

and w is the unique positive solution of the problem in the whole space Rn decaying at in�nity, see
[NW95] for more details. For non-constant potentials, solutions have a similar spike-layer characteristic,
but the situation is more di�cult. It was proven by Gui in [Gui96] for non-constant potentials V and
a wide class of nonlinearities f(u; · ) that multi-bump solutions concentrate at minima of V . For the
perturbed problem (3), the concentration of solutions for K = 1 was shown in [Wan93] and Wang &
Zeng proved in [WZ97] the existence of ground-states under certain assumptions on the competition
between the potentials: each one would try to attract the concentration of the ground-state to their
minimum or maximum. De�ning the function

g(x) :=
V (x)(2p+2+n−np)/(2p−2)

K(x)2/(p−1)
(10)

equation (3) has a positive ground-state solution for ε → 0 if one of the following hypothesis holds
true [WZ97]:

(a) there holds lim inf |x|→∞ V (x) =: V∞ = supx∈Rn V (x) and
lim sup|x|→∞K(x) =: K∞ = infx∈Rn K(x),

(b) there exists a point x0 ∈ Rn such that V∞ ≥ V (x0) and K∞ ≤ K(x0) with one of the inequalities
being strict,

(c) there exists a point x0 ∈ Rn such that V (2p+2+n−np)/(2p−2)
∞ ≥ g(x0)K

2/(p−1)
∞ .

If

lim inf |x|→∞ V (x)(2p+2+n−np)/(2p−2)

lim sup|x|→∞K(x)2/(p−1)
≥ inf

x∈Rn
g(x)

then for ε→ 0 equation (3) has a positive ground-state solution. Moreover, for every sequence {ε̃k} →
0, there exists a subsequence {εk} such that a sequence of positive ground-states {uε} concentrates at a
global minimum point of g. We refer to [WZ97] for a more detailed discussion. This spike-layer behavior
of ground-states is a very important detail for designing numerical algorithms and good initial values
required for fast convergence. Especially in situations, where concentration points are not known,
e�cient adaptive mesh re�nement which detects the local behavior of solutions is indispensable.

2.3 Mountain Pass algorithm

An algorithm for the numerical calculation of solutions of (3) based on the Mountain Pass Theorem
was suggested by Choi & McKenna. Exploiting the topological shape of the energy functional J over
the underlying Hilbert space H, the Mountain Pass algorithm (MPA) was given in [CM93]. We reword
a slightly modi�ed version from [CDN01]:

Step 1. Take an initial guess w0 ∈ H such that w0 6= 0 and J(w0) ≤ 0 (outside the ring of mountains).

Step 2. Find t∗ ∈ (0, 1) such that J(t∗w0) = max0≤t≤1 J(tw0), set u0 := t∗w0 (�nd the point on the
edge of the ring of mountains on the straight path from zero to the initial guess)
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Step 3. Calculate the direction of steepest descent: Compute J ′(u0) and set v = J ′(u0)

Step 4. If ‖v‖H ≤ tol, stop, else

Step 5. Let w = u0 − v and �nd t∗ > 0 such that J(t∗w) = maxt>0 J(tw)

Step 6. If J(t∗w) < J(u0), set u0 = t∗w and goto step 3, else set v := 1
2v and go to step 5

Indeed, the topological shape of the functional makes this approach very convenient for developing
numerical methods. As long as V > 0 and K > 0, there holds

1

2
J1,ε(v)− 1

p+ 1
J2(v) :=

1

2

∫
Ω

(
ε2|∇v|2 + V (x)v2

)
dx− 1

p+ 1

∫
Ω
K(x)|u|p+1 dx

with J1,ε(·) ≥ 0 and J2(·) ≥ 0. For every �xed v ∈ H1
0 (Ω) the mapping

t 7→ Jε(tv) =
1

2
t2J1,ε(v)− 1

p+ 1
tp+1J2(v) (11)

has zeros at t = 0 and at

t0 :=

(
(p+ 1)

2

J1,ε(v)

J2(v)

) 1
p−1

if v 6≡ 0 .

Then, the unique maximum is at tmax := J1,ε(v)1/(p−1)J2(v)−1/(p−1). Moreover, Jε(tv) → −∞ for
t→ +∞. The only critical points of Jε are either at zero or on the edge of the ring of mountains.

It is known that MPA of Choi & McKenna will �nd mainly solutions of mountain pass type with Morse
index 1 or 0 [CZN00], [CDN01]. There are various modi�cations in the literature to obtain multiple
solutions with higher Morse index, see [DCC99], [WZ04], [XYZ12] for more details.
In this work we focus on the computation of positive mountain pass solutions of (3). We combine
ideas used in the MPA together with Newton's method, appropriate line searching and error control
with adaptive mesh re�nement. We want to remark that our assumptions on V and K guarantee the
existence of a positive ground-state [WZ97], but in general a positive mountain pass solution is not
unique. The computed solution will depend on the initial value and there is no guarantee that it is a
ground-state.

3. Patankar-Newton scheme for Mountain Pass problems

3.1 Discretization and �nite element approximation

We introduce the notation of weak solutions and the discretization of (3) into �nite elements. A
function u ∈ H1

0 (Ω) =: V is called a weak solution of (3), if

A(u)(ϕ) := ε2(∇u,∇ϕ)Ω − (f(u), ϕ)Ω = 0 for all ϕ ∈ V. (12)

Clearly, any weak solution u ∈ V is a critical point of the energy functional (5): J ′ε(u)(ϕ) = A(u)(ϕ) for
ϕ ∈ V. For any measurable set M we denote the L2(M)-scalar product by ( · , · )M . The discretization
of the variational problem (12) seeks approximations uh ∈ Vh in a �nite dimensional subspace Vh ⊂ V,

A(uh)(ϕh) = ε2(∇uh,∇ϕh)Ω − (f(uh), ϕh)Ω = 0 for all ϕh ∈ Vh. (13)

We consider approximations with (�nite element) subspaces of the form

Vh :=
{
v ∈ V : v

∣∣
C ∈ P (C), C ∈ Th

}
.
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Here, Th is a decomposition of Ω (the mesh) into quadrilaterals C (cells) of diameter hC and h :=
maxC∈Th hC is the global discretization width. The space P (C) denotes a suitable space of polynomial-
like shape functions de�ned on the cell C ∈ Th. For example, `bilinear' elements are obtained as usual
via a bilinear transformation from the space of bilinears Q1

(
Ĉ
)

= span{1, x1, x2, x1x2} on the unit cell

Ĉ = [0, 1] × [0, 1], see e.g. [BS02] for more technical details on �nite elements. We look for solutions
uh ∈ Vh of the discrete problem (13). With a nodal basis {φih, i = 1, . . . , N} of the �nite element space
Vh, dim(Vh) = N , the discrete problem (13) can be converted to a system of algebraic equations for
the vector u = (ui)

N
i=1 of coe�cients in the decomposition uh =

∑N
i=1 uiφ

i
h:

ε2Au− F (u) = 0. (14)

The entries of the matrix A = (aij)
N
i,j=1 in (14) are given by aij = (∇φjh,∇φ

i
h)Ω and the vector

corresponding to the nonlinearity reads(
F (u)

)
i

=
(
f(uh), φih

)
Ω
, i = 1, . . . , N.

An iteration scheme for solving the nonlinear problem (12) as well as the corresponding discrete copy
(13) can be formulated in general form as follows:

Step 1. Initialization: Compute an initial solution u(0) ∈ V.

Step 2. Iteration: Compute a new search direction d.

Step 3. Update: Update u(j+1) = u(j) + λd, where the step length λ is chosen due to, e.g., Armijo's
rule.

Step 4. Error estimation: Compute the residual and stop if
∥∥A(u(j+1)

)
(ϕ)
∥∥ < tol, otherwise set

j := j + 1 and continue the iteration with step 2.

We will discuss di�erent aspects for the choice of the search direction together with step length control.
Moreover, we have to ensure that solutions are always positive. In a discrete context, this iteration
scheme cannot overcome the discretization error. Using �nite elements based on polynomials of �xed
degree on all cells, increasing the accuracy of the approximation is always related to mesh re�nement.
We will accomplish this iteration scheme with a mesh re�nement strategy in combination with an error
control strategy.

3.2 Compute the search direction

Let us assume that we are on the edge of the ring of mountains around the low spot at zero described by
the topological shape of the energy functional over the underlying space V. Searching for a mountain
pass of the functional Jε(·), a search direction d should be a direction of descent:

J ′ε
(
u(j)
)
(d) < 0 (15)

and we call a direction acceptable, if (15) is ful�lled, see also [Kel99]. There are di�erent possibilities
for computing a search direction in this context. The direction of steepest descent used in the Mountain
Pass algorithm is de�ned as the direction where the gradient is as negative as possible. The steepest
descent direction can be computed as solution of the problem [CM93]

ε2(∇d,∇ϕ)Ω = −J ′ε
(
u(j)
)
(ϕ) for all ϕ ∈ V . (16)

Another possibility is Newton's direction:

A′
(
u(j)
)
(d, ϕ) = −A

(
u(j)
)
(ϕ) for all ϕ ∈ V, (17)
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where the directional derivative can be computed to

A′(u)(ψ;ϕ) = ε2(∇ψ,∇ϕ)Ω − (f ′(u)ψ,ϕ)Ω, ϕ, ψ ∈ V

and f ′(u) = −V (x) + pK(x)|u|p−1, p > 1. Newton's method is the standard procedure for solving
nonlinear problems. Providing quadratic convergence properties locally near solutions, a drawback of
Newton's method is the computation of the derivative of the functional A(·) in every iteration step,
which means that the system matrix has to be recalculated in each inner loop. It is also well-known
that starting the iteration far away from a solution, convergence is very slow and the iteration may
�nally diverge due to the local convergence properties of the algorithm.
A short calculation shows that the direction of steepest descent is always acceptable since

J ′ε
(
u(j)
)
(d) = −ε2(∇d,∇d)Ω < 0.

Let us assume that u(j)
h ∈ Vh is a �nite element approximation in iteration step j ≥ 0. The corre-

sponding algebraic equations are

ε2Ad = −
(
ε2Au(j) − F (u(j))

)
and the discrete condition for d being an acceptable direction reads(

ε2Au(j) − F (u(j))
)
· d < 0 .

Since A is positive de�nite, we have

−
(
ε2Au(j) − F (u(j))

)
·A−1 ·

(
ε2Au(j) − F (u(j))

)
< 0 for all ε > 0.

A main advantage is that the iteration using the steepest descent direction does globally converge
(see e.g. [Kel99]), but unfortunately in an unpracticable slow manner. The Newton direction is not
necessarily acceptable,

A
(
u(j)
)
(d) = −A′

(
u(j)
)
(d, d) = −ε2(∇d,∇d)Ω +

(
f ′
(
u(j)
)
d, d
)

Ω
.

The corresponding algebraic equations for the Newton direction read(
ε2A−∇F (u(j))

)
d = −

(
ε2Au(j) − F (u(j))

)
(18)

with the components
(
∇F (u(j))

)
ij

=
(
f ′(u

(j)
h )φjh, φ

i
h

)
Ω
.

Remark 1: In contrast to the direction of steepest descent, Newton's direction has no direct topological
interpretation. If the Newton direction d is not acceptable, we have computed a direction, where the
gradient of the functional Jε grows up. With regard to our problem we go up the mountain. A better
choice is the opposite direction and we change the sign of d.

There are mainly two ingredients for the success of Newton's method. The �rst one is a good initial
guess, otherwise convergence is very slow or may fail due to the local characteristic of the method.
The steepest descent direction provides global convergence and it can be used in the beginning of
the iteration far away from a solution, pushing the iterate closer to the region of fast convergence of
the Newton scheme. In a vicinity of a solution one can switch to Newton's method, which takes into
account the nonlinearity and it should converge faster. Another important tool is step length control
and we will discuss it shortly in the next paragraph.
Secondly, the problem has to be non-degenerate: J ′′ε (u(j)) has to be invertible. This is a more crucial
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problem. While looking for a mountain pass, solutions of this type are usually saddle points and the
second derivative of the functional is singular. This problem was discussed in [WZ04] and it can be
overcome using a generalized inverse. If the second derivative of the energy functional is singular, the
Newton direction can be calculated as the least-norm solution of the minimization problem

min
d∈V

∥∥J ′′ε (u(j)
)
(d) + J ′ε

(
u(j)
)∥∥

2
(19)

in an adequate subspace of V. Nevertheless, the weak problem (17) can be solved in many cases even
if the second derivative is close to singular [WZ04]. In practical computations, the second derivative
of the energy functional is computed at an iterate u(j) and the numerical approximation of the second
derivative can be close to singular. The resulting algebraic equations can still be solved precisely using
appropriate preconditioners. We will come back to this point when showing numerical examples.

3.3 Line searching methods

As presented in the previous section, a search direction d is acceptable, if the gradient of the functional
decreases. But Newton's method only provides local convergence properties and a full iteration step
does not necessarily pushes the iterate closer to a solution. A possibility to overcome this drawback is
to introduce a step length λ ∈ (0, 1] and de�ne the update of the iterate to

u(j+1) = u(j) + λd.

To determine the step length λ, a commonly used condition for nonlinear systems of equations is a
discrete Armijo rule [Arm66] of the form∥∥A(u(j)

h + λdh
)
(ϕ)
∥∥

2
< (1− αλ)

∥∥A(u(j)
h

)
(ϕ)
∥∥

2

tracking down the residual. Looking again on the topological shape of a mountain pass, such a step
length can be too large and miss the bottom of the mountain pass. In [Kel99] a su�cient condition for
calculating λ is suggested for �nding the local minimum of a functional in a local basin of the initial
guess. Thereby, λ and consequently u(j) + λd is accepted, if

Jε
(
u(j) + λd

)
− Jε

(
u(j)
)
< αλJ ′ε

(
u(j)
)
(d) < 0 (20)

with a positive parameter α ∈ (0, 1). While zero is a local minimum of Jε, condition (20) does not make
sense in our situation and may pull the iterate down the mountain. We employ a slightly modi�ed
version and accept a step length λ, if

Jε
(
t∗(u(j) + λd)

)
− Jε

(
u(j)
)
< αλJ ′ε

(
u(j)
)
(d) < 0, (21)

with the parameter t∗ chosen such that

Jε
(
t∗(u(j) + λd)

)
= max

t>0
Jε
(
t(u(j) + λd)

)
.

Remark that t∗ can be found directly for �xed λd from the unique maximum of (11). Solutions we are
looking for are located on the edge of the ring of mountains, this modi�cation prevents the iterate from
falling down the mountain and pushes it towards the mountain pass. Usual suggestions as presented
in [Kel99] are α ≈ 10−4 and this parameter is intended to make (21) as easy as possible to ful�ll.
The iteration will be very slow if λ is too small. A strategy of this type is known as continuous
Armijo's rule [Arm66] and pushes especially the Newton iteration from regions where convergence is
slow towards the region of quadratic convergence, where �nally full steps can be used.
In particular, line searching is realized in the MPA starting with step length equal to one and reducing
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it by a factor of one half in each step. We suggest a polynomial line search strategy with safeguarding,
see [Kel99] for a more detailed discussion. Starting with λ0 = 1 and λ1 = σ1, where σ1 ≈ 0.5 is a
chosen parameter, we iterate until (21) is ful�lled. For k ≥ 2, λk is computed as the minimum of the
function

ζ(λ) := Jε
(
t∗(u

(j)
h + λdh)

)
,

by means of an interpolation, ζ(λ) ≈ p(λ) = ζ(0) + c1λ+ c2λ
2, where

c1 =
λ2
k−1

(
ζ(λk−2)− ζ(0)

)
− λ2

k−2

(
ζ(λk−1)− ζ(0)

)
λk−1λk−2(λk−1 − λk−2)

,

c2 =
λk−2

(
ζ(λk−1)− ζ(0)

)
− λk−1

(
ζ(λk−2)− ζ(0)

)
λk−1λk−2(λk−1 − λk−2)

.

(22)

The polynomial p interpolates ζ in ζ(0), ζ(λk−1) and ζ(λk−2). It is easily seen that the extremum is
given by λnew = −p′(0)/p′′(0) = −c1/(2c2). Thus, if p′′(0) = 2c2 > 0, we have reached a minimum
and choose λk = λmin. Otherwise, we do a safeguarding and determine

λk =

{
σ0λk−1, if λnew < σ0λk−1,

σ1λk−1, if λnew > σ1λk−1.

Consequently, the new step length always satis�es σ0λk−1 < λk < σ1λk−1. Usual values are σ0 = 0.1
and σ1 = 0.5, see [Kel99]. Without safeguarding the minimum can be too close to zero and the
iteration can become stuck. Otherwise, choosing large steps can lead to a non-desired behavior of the
iteration, as discussed previously. Also with safeguarding the iteration can be very long, especially if
the derivative of the functional is close to zero, which is the case for a mountain pass. We limit the
number of cycles by k ≤ kmax ≈ 20. If the line search method does not produce a valid step length
after this number of steps, usually λ20 ≈ 10−12, it is an indicator that the discretization is too coarse
to reproduce condition (21). In this case, we stop the iteration and re�ne the mesh.

3.4 How to enforce positiveness of solutions - the Patankar trick

We are interested in positive solutions of the Schrödinger equation (3). But neither the search direction
computed by the Newton method nor the direction of steepest descent guarantee the positiveness of
the iteration u(j+1), even if u(j) is positive. There are di�erent possibilities to enforce constraints on
solutions, for example to project the iteration u(j+1) to the space of positive functions. This possibility
is discussed in [TT12] and the projection suggested is of the form P (u) = u − co(u), where co(u) is
the closed convex envelope of u. See [TT12] for more details. The properties of this projection used in
combination with the Mountain Pass algorithm ensure convergence to a nontrivial positive solution of
(3). But the closed convex envelope of a �nite element solution is di�cult and expensive to compute,
especially on a large number of iteration steps.
We suggest another approach. Let us assume that we have the acceptable search direction d, then we
modify the update of the iterate by introducing a weight ω such that

u
(j+1)
h,ω := u

(j)
h + ωdh .

If there is a component of the discrete iterate which is negative, u(j+1)(i) = u(j)(i) + d(i) < 0, we
weight this component by means of

u(j+1)
ω (i) = u(j)(i) + ω(i)d(i) := u(j)(i) +

u(j)(i)

u(j)(i)− d(i)
d(i) (23)
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for indices i = 1, . . . , N . If u(j)(i) + d(i) < 0 the weighted component u(j+1)
ω (i) is always positive if

the component u(j)(i) of the previous iteration is positive:

u(j)(i) + ω(i)d(i) =
u(j)(i)u(j)(i)

u(j)(i)− d(i)
.

Modi�cations of type (23) are known as Patankar trick or Patankar scheme introduced in [Pat80] and
used in a speci�c modi�cation to enforce conservativity, for example in [BDM03].
If the search direction dh tends to zero, (23) clearly shows, that also the weighted direction ωdh tends
to zero and Newton's method has found a solution, if ωdh vanishes. But the Patankar modi�cation
cannot guarantee that the weighted vector dω is a direction of descent, even if the direction d satis�es
this constraint. The estimate

0 <
u(j)(i)

u(j)(i)− d(i)
<

1

2

provides an upper bound for the weights, but negative components of d can be weighted with such a
small factor that the resulting vector does not ful�ll the descent condition (15). In combination with a
type of line searching, this can be overcome. If the weighted direction dω is not a descent direction, the
Patankar trick scales the components of d down and reduces the possibility that the weighted vector
loses the descent property. If we introduce a step length η ∈ (0, 1] in the weighted direction,

dω,η(i) =
u(j)(i)

u(j)(i)− ηd(i)
ηd(i) ,

the number of weighted components decreases with η → 0 and there exist a step length η, such that the
resulting weighted vector dω is a descent direction. In practice, this can be realized with a simple loop,
starting with η0 = 1 and reducing the step length by a factor not too small, for example ηk+1 = 0.75ηk
for k ≥ 0. Doing line searching as described in the previous section, it guarantees condition (21) for
the new iterate. The weighted i-th component now reads

u(j+1)
ω (i) ==

(
u(j)(i)

)2 − (1− λ)ηu(j)(i)d(i)

u(j)(i)− ηd(i)
(24)

and due to −ηd(i) > 0 one can directly conclude the positivity of u(j+1)
ω (i) for η, λ ∈ (0, 1]. In practice,

the step length η and also the new search direction dω can be very small, as we see from (24). The
convergence can become very slow especially in regions far away from a solution. In such a case, one
should interrupt the loop and re�ne the mesh. If the change in the functional value is too small, a
good choice is ε · 10−10. In summary, we have proved the following result:

Lemma 4. Starting with a positive initial solution u(0) > 0, the modi�ed search direction ωdh
de�ned component-by-component in (23) ensures the positiveness of the iteration u

(j+1)
h,ω for j ≥ 0.

In combination with step length control and a line searching method as given in (24), the iterate

u
(j+1)
h,ω ful�lls the descent condition (21).

3.5 Error control and adaptive mesh re�nement

Mesh re�nement is one of the main keys to achieve e�cient and accurate �nite element schemes,
especially for the Schrödinger problem (3). We know a priori that we compute spike-layer solutions,
but we do not know the exact location and diameter of the peak. In recent works, e.g. [Mon11], [XYZ12],
mesh re�nement was done by hand calculating test problems, where the location of peaks where known,
what in general is of course not the case. For more complex problems, an e�cient mesh re�nement
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strategy is indispensable for obtaining reliable and accurate results.
Accuracy is always coupled with error measurement, for example, the residual∥∥A(u(j)

h

)
(ϕh)

∥∥
2
, u

(j)
h , ϕh ∈ Vh.

Obviously, the residual does not provide a direct information how to adapt the mesh to improve
accuracy. The iteration scheme tracks down the error to some tolerance, but cannot overcome the
discretization error of the �nite element approximation. Due to the very local behavior of solutions,
global mesh re�nement is not a realistic option, since it yields an astronomically high computational
e�ort to obtain suitable accuracy. Thus, we take into account a di�erent aspect of solutions of (3).
We are interested in the computation of positive mountain pass solutions with �nite energy. In order
to calculate the energy level precisely, it is reasonable to adapt the mesh in such a way, that the error

E(uh) = |Jε(u)− Jε(uh)| (25)

gets smaller with continuing the mesh re�nement. An approach realizing such a strategy was developed
mainly by Rannacher and co-workers, called the dual weighted residual (DWR) method, see e.g. [BR03]
and the literature cited there. The principle idea is the following: let J(·) be the error functional we
are interested in and (25) the error we want to control, where u is a weak or even strong solution of
(3) and uh is a �nite element approximation. Introduce a dual variable z ∈ V as a weak solution of
the variational problem

J ′(u)(ϕ)−A′(u)(ϕ, z) = 0 for all ϕ ∈ V.

Consequently, the discrete dual problem reads

J ′(uh)(ϕh)−A′(uh)(ϕh, zh) = 0 for all ϕh ∈ Vh.

As shown in [BR03], the error (25) can be computed by

J(u)− J(uh) = ρ(uh)(z − ϕh) + R
(2)
h (26)

for any ϕh ∈ Vh with the residual

ρ(uh)(·) := −A(uh)(·) .

The remainder term R
(2)
h is quadratic in the primal error e = u− uh:

R
(2)
h =

∫ 1

0

{
A′′(us)(e, e, z)− J ′′(us)(e, e)

}
s ds

where us := uh + se. Relation (26) provides the possibility to compute the functional error from
the �nite element solution and, in addition, to construct a cell-wise error indicator used for mesh
re�nement. Neglecting the remainder term and integration by parts yields

Jε(u)− Jε(uh) = ρ(uh)(z − ψh) + . . . = −A(uh)(z − ψh) + . . .

= −ε2
(
∇uh,∇(z − ψh)

)
Ω

+
(
f(uh), z − ψh

)
Ω

+ . . .

=
∑
C∈Th

{(
ε2∆uh + f(uh), z − ψh

)
C + ε2

(1

2

[
∂νuh

]
, z − ψh

)
∂C\∂Ω

}
+ . . . ,

where ∂νu(x) := ∇u(x) · ν(x) denotes the derivative in the direction of the outward normal on the
cell boundary ∂C and

[
∂νu
]
is its jump over the inter-element boundaries. The error of the functional
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can be presented in terms of the cell and edge residuals of the solution weighted by the dual solution.
With ψh = Ihz, where Ihz denotes the nodal interpolant of the continuous function z, we have

E(uh) ≤
∑
C∈Th

{∥∥ε2∆uh + f(uh);L2(C)
∥∥‖z − Ihz;L2(C)‖

+
ε2

2

∥∥∂νuh;L2(∂C \ ∂Ω)
∥∥∥∥z − Ihz;L2(∂C \ ∂Ω)

∥∥}+ . . . . (27)

The dual solution z has to be computed numerically also, but with higher order than uh, because over-
wise the error would be zero. It is worth mentioning that this fact implies a necessary but even usually
considerably amount of computational e�ort. Nevertheless, beside the Patankar-Newton approach,
this strategy represents the main key for the success of the whole numerical scheme and enables the
calculation of test cases with a small parameter ε = 10−6 for the �rst time.

3.6 Algorithm

For the sake of completeness, we summarize the speci�c steps into the following algorithm. Starting
from an initial coarse grid T0, let T0 ⊂ T1 ⊂ . . . ⊂ Tl be a hierarchy of re�ned meshes with corresponding
�nite element spaces Vl.

Step 1. Initialization: Take an initial guess w0 ∈ V0 such that w0 6= 0 and Jε(w0) < 0. Compute

t∗ =
(
J1,ε(w0)/J2(w0)

)1/(p−1)
ful�lling Jε(t∗w0) = maxt>0 Jε(tw0), set the initial solution to

u0 := t∗w0 ∈ V0.

Step 2. Iteration (mesh re�nement): For l ≥ 0 do:

Step 3. Newton iteration: Start with u(0)
l = ul ∈ Vl, for j ≥ 0 do:

Step 4. Compute residual: Stop and go to step 9, if∥∥A(u(j)
l

)(
ϕl
)∥∥

2
< tol ≈ ε · 10−10

Step 5. Search direction: For the iterate u(j)
l ∈ Vl compute the Newton direction

A′
(
u

(j)
l

)(
d

(j)
l , ϕl

)
= −A

(
u

(j)
l

)
(ϕl) for all ϕl ∈ Vl

Step 6. Accept d(j)
l , if A

(
u

(j)
l

)(
d

(j)
l

)
< 0, otherwise change the sign

Step 7. Patankar trick: Set η0 := 1, for k ≥ 0 do: Compute modi�ed direction ωdl,ηk with components

dω,ηk(i) :=
u(j)(i)

u(j)(i)− ηkd(i)
ηkd(i) ,

if ωdl,ηk is a direction of descent, set d(j)
l := ωdl,ηk and go to step 8, otherwise set ηk+1 :=

0.75 · ηk.

Step 8. Line search: Choose α ≈ 10−4, σ0 ≈ 0.1, σ1 ≈= 0.5.
Set λ0 = 1 and λ1 = σ1. For k ≥ 0 do: If k ≥ 2 calculate the coe�cients c1 and c2 according to
(22). If c2 > 0, choose λk = −c1/2c2, otherwise λk ∈ [σ0λk−1, σ1λk−1]. Let w = u

(j)
l + λkd

(j)
l

and compute t∗ =
(
J1,ε(w)/J2(w)

)1/(p−1)
such that Jε(t∗w) = maxt>0 J(tw). If

Jε
(
t∗w
)
− Jε

(
u

(j)
l

)
< αλkA

(
u

(j)
l

)(
d

(j)
l

)
set u(j+1)

l = t∗w, j = j + 1 and go to step 5, otherwise set k = k + 1.
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Step 9. Error estimation: Evaluate a bound for the error E(ul) of the functional value using (27).
If E(ul) < tol, stop, otherwise re�ne the mesh Tl ⊂ Tl+1, interpolate ul → ul+1 ∈ Tl+1, set
l := l + 1 and go to step 2.

4. Numerical results

Before we show numerical results, we give some short remarks on the implementation. For numerical
computations, we use the deal.II package, a C++ �nite element open source library which provides data
structures and algorithms needed in �nite element calculations, see [BHK07] and www.dealii.org. Com-
putations in deal.II are parallel over nodes based on MPI and built on the p4est library, see [BBHK11]
and www.p4est.org. For our computations we use BiCGstab from the parallel PETSc package with
the approximate inverse preconditioner ParaSails from the HyPre package, which can handle inde�nite
linear systems. In this �rst approach, we approximate solutions uε with biquadratic Q2 Lagrange
elements and dual solutions z with bicubic Q3 Lagrange elements on quadrilaterals. All results were
obtained on a machine with a single quad-core processor running 4 MPI processes.

Remark: As discussed in a previous paragraph, we are looking for a mountain pass where the second
derivative of the functional can be zero and the solution can be a saddle point of the functional. For
the discrete iteration scheme, this means that the system matrix of the Newton scheme can become
not only inde�nite, but also very close to singular. Using the BiCGstab method together with the
ParaSails preconditioner designed for handling inde�nite problems, we never encountered any problems
solving the algebraic linear systems, even we observed that the system matrix becomes inde�nite.

4.1 Example 1: Constant potentials

Utilizing V = K ≡ 1 and p = 3, we obtain an example which can be found in [NW95] and the literature
therein:

−ε2∆u+ u = u3, u ≥ 0 in Ω, u = 0 on ∂Ω. (28)

From the statements in section 2.2 the shape of solutions and also the asymptotic behavior of the
ground-energy are known and problem (28) is excellent to test numerical methods. Choosing the unit
circle in the plane R2, Ω := {x ∈ R2 : ‖x‖ < 1}, the unique ground-state solution concentrate at the
origin. The spike-layer form suggests an initial guess of the following type:

w0(x) :=

{
c exp

(
− ‖x−xc‖
R−‖x−xc‖

)
, if ‖x− xc‖ < R,

0, otherwise.
(29)

The concentration point is the origin, xc = (0, 0)>, and depending on ε good choices for R are between
0.5 and 0.05, whereas c = 10 was always su�cient in our computations. We limit the number of
Newton iterations to jmax ≤ 4 but run lmax = 16 mesh re�nement cycles. We stop Newton iteration
and re�ne the mesh if

∥∥A(u(j)
l

)∥∥
2
< tol = ε · 10−10. Mesh re�nement is based on the error estimator

shown in section 3 and we re�ne 10% of the cells per cycle. The re�nement algorithms in the deal.II
library will �ag some additional cells for smoothing the triangulation and the e�ective ratio of re�ned
cells will about 20− 30%. Thereby, we also allow the library to coarsen 0.1% of the cells.
Table 1 shows the numerical results obtained by the Newton iteration combined with the Patankar
modi�cation and adaptive mesh re�nement. Besides the value ε the number of cells and degrees of
freedom (DoF) of the �nally obtained mesh are shown. The column ‖A(uh)‖2 shows the residual of
the �nal solution and Jε(uh) is the energy value obtained. The estimated error is shown in column
E(uh) = |Jε(u)−Jε(uh)| and minimal as well as maximal values of uh are given in the last two columns.
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Here, we run 16 mesh re�nement cycles. We want to underline, that the energy values are in absolute
agreement with the asymptotically expected ones shown in (9):

Jε(uε) = O
(
ε2
)
.

Also the maximum of the solutions shown in the last column stay very close to a constant for ε → 0
and do not fall to zero. Numerical tests suggest parameters for line search α = 10−4, σ0 = 0.1 and
σ1 = 0.5. The limit kmax = 20 for line search and the Patankar line search iteration is a good choice
in practice. This high number of iterations gives the line search a bit more time, which is needed
especially for small values of ε. More accuracy achieved by an iteration step here is much cheaper
than re�ning the mesh. We choose β = 0.75 in the Patankar line search iteration. Unfortunately, for
ε = 10−5 and ε = 10−6, Table 1 shows a loss of accuracy and especially the ground-energy is not as
we expect it. All other ground-energy values shown in the table are precise up to four digits. The
spike-layer solution has a very small peak and we need more mesh re�nement to resolve this. Using
18 mesh re�nement cycles for ε = 10−5 and 20 cycles for ε = 10−6 produces the results in Table 2
which are in absolute agreement with the expected asymptotic behavior. But we have to remark that
residuals and error estimation are in the range of machine precision, which is around 10−16 for doubles
in C++ on a 64bit system. From this point of view, it does not make sense to go much smaller with
values for ε. In comparison to the results shown in [Mon11] for ε ≥ 10−1 and also in [CZN00] for
ε ≥ 10−2, the mesh re�nement strategy in combination with the positivity preserving Patankar ansatz
allows for much more accurate results. As we see from the results, we need heavy re�nement to resolve
the peak, but using for example global mesh re�nement costs would be more than 70% higher per step
and would lead to astronomically large systems of nonlinear equations.
The most interesting cases are ε = 10−5 and ε = 10−6. Figure 1 shows the initial mesh with 5185 DoF
and the mesh after 20 re�nement cycles with 796657 DoF for ε = 10−6 is shown in �gure 2. In some
distance from the peak of the solution at the origin near the outer boundary the strategy coarsen the
mesh and re�nement is only near the peak, exactly as aspected. Looking very close to the peak, shown
in Figure 3 - 5, we see the very �ne mesh structure around the peak and the �nal mesh width directly
around the origin is h = 7 · 10−8. Note the plot scale! The solution is plotted around the origin in
Figure 6 with the same scaling as the mesh in Figure 5. These pictures clearly show the functioning
and the e�ciency of the error based mesh re�nement strategy.

Figure 1: Example 1: Initial mesh, 5185 DoF Figure 2: Example 1: Final mesh, 796657 DoF
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ε # cells # DoF ‖A(uh)‖2 Jε(uh) E(uh) min(uh) max(uh)

8.00e− 01 75122 309529 3.33e− 13 6.9540e+ 00 5.63e− 09 0.00 3.3333

4.00e− 01 70598 290585 1.79e− 13 1.0072e+ 00 1.78e− 09 0.00 2.3444

2.00e− 01 67892 274381 3.56e− 14 2.3415e− 01 7.05e− 10 0.00 2.2073

1.00e− 01 65726 266313 9.90e− 15 5.8504e− 02 2.08e− 10 0.00 2.2062

5.00e− 02 66815 270905 1.06e− 15 1.4626e− 02 4.67e− 11 0.00 2.2062

1.00e− 02 64703 263509 4.97e− 17 5.8504e− 04 2.16e− 12 0.00 2.2062

5.00e− 03 57794 234925 5.32e− 16 1.4626e− 04 6.39e− 13 0.00 2.2062

1.00e− 03 75395 309991 8.71e− 13 5.8504e− 06 1.99e− 14 0.00 2.2062

5.00e− 04 74360 306093 1.40e− 14 1.4626e− 06 5.46e− 15 0.00 2.2062

1.00e− 04 70793 294517 1.50e− 15 5.8504e− 08 3.28e− 16 0.00 2.2062

5.00e− 05 68294 285849 5.59e− 14 1.4626e− 08 1.96e− 16 0.00 2.2062

1.00e− 05 77369 336201 6.32e− 15 5.8504e− 10 4.12e− 15 0.00 2.2062

1.00e− 06 68132 309913 3.56e− 14 6.0235e− 12 6.60e− 13 0.00 2.2091

Table 1: Example 1: Results on the unit circle, 16 re�nement cycles, V = K ≡ 1, p = 3

ε # cells # DoF ‖A(uh)‖2 Jε(uh) E(uh) min(uh) max(uh)

1.00e− 05 129227 544913 1.89e− 16 5.8504e− 10 1.55e− 17 0.00 2.2062

1.00e− 06 185999 796657 1.12e− 20 5.8504e− 12 6.18e− 18 0.00 2.2062

Table 2: Example 1: Results on the unit circle after 18 and 20 cycles, V = K ≡ 1, p = 3

Figure 3: Example 1: Final mesh, zoom 1 Figure 4: Example 1: Final mesh, zoom 2
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Figure 5: Example 1: Final mesh, zoom 3 Figure 6: Example 1: Solution u, zoom 3

Another interesting question is concerned with the need for the Patankar trick in practical calculations.
For ε ≥ 10−1, we observed that starting with a positive solution the iterate remains to be positive and
the iteration automatically �nds a positive solution also without the Patankar modi�cation. However,
for smaller values of ε, the Newton scheme destroys positiveness of the iterate in our computations and
we have to apply the Patankar approach in nearly all iteration steps, which is clearly a signal, that the
Patankar trick is one of the keys for computing positive solutions for small ε.

4.2 Example 2: Nonconstant potentials - on the unit circle

As a �rst example for nonconstant potentials we choose

V (x) = 1− c

‖x− x0‖2 + 1
, K(x) =

1

‖x− x1‖2 + 1

where c = 0.95 is determined such that the function V has no zeros. The point x0 = (0, 0)> is a
valley of V and x1 = (0.5, 0.5)> is a peak of K. Table 3 shows the computed results with 16 mesh
re�nement cycles for ε ≥ 10−4, and 18 and 20 cycles for ε = 10−5 and ε = 10−6, respectively. We
see the same behavior of the ground-energy as for constant potential functions: the ground-energy
decreases proportional to ε2. An interesting phenomena for this type of potentials is the concentration
point of solutions. We start all calculations with the initial function w0 given in (29), choosing R = 0.5,
c = 10 and x0 = (0, 0)>. For ε < 10−2 we adapt the diameter of the peak to R = 0.05. After 16
mesh re�nement cycles the solution for ε = 0.8 is plotted in Figure 7. The concentration point is not
at the minimum of the function g from (10), which is the origin. As we can see from the solution
for ε = 10−6 in Figure 8, the peak has moved closer to the origin. But this is in absolute agreement
with the theoretical results shown in [WZ97]: the ground-state solution concentrates at the origin only

for ε → 0 and this is what we observe here. Of course, we do not have a criterion to prove, that we
have calculated a ground-state. It is clear that a solution computed by Newton's method depends
on the initial value. Maybe there is an initial value which produces another sequence of iterates with
smaller ground-energy. The conclusion we can draw is, that we have computed a solution uh and the
corresponding numerical energy value Jε(uh) is precise up to an error E(uh).



18

ε # cells # DoF ‖A(uh)‖2 Jε(uh) E(uh) min(uh) max(uh)

8.00e− 01 70160 289979 7.65e− 13 8.5483e+ 00 8.89e− 09 0.00 3.8960

4.00e− 01 80990 334905 1.96e− 13 7.4965e− 01 7.96e− 10 0.00 2.2315

2.00e− 01 70946 289861 4.36e− 14 1.0398e− 01 2.85e− 10 0.00 1.5966

1.00e− 01 66587 268793 1.19e− 14 1.8836e− 02 7.33e− 11 0.00 1.3603

1.00e− 02 65729 266981 8.62e− 17 7.7441e− 05 3.34e− 13 0.00 0.8459

1.00e− 03 46673 190345 7.46e− 19 5.3585e− 07 3.89e− 15 0.00 0.6758

1.00e− 04 86816 353543 1.11e− 17 5.0321e− 09 1.03e− 17 0.00 0.6479

1.00e− 05 111419 461961 4.03e− 17 4.9975e− 11 9.45e− 20 0.00 0.6448

1.00e− 06 143252 588529 7.24e− 20 4.9940e− 13 1.51e− 21 0.00 0.6445

Table 3: Example 2: Results on the unit circle with nonconstant V and K, p = 3

Figure 7: Example 2: Solution u, ε = 0.8 Figure 8: Example 2: Solution u, ε = 10−6
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4.3 Example 3: Nonconstant potentials - on a dumbbell-shaped domain

As a third example, we show results on a dumbbell-shaped domain. The left circle of the dumbbell is
chosen with radius r0 = 0.5 and center x0 = (0, 0)>, the right one with r1 = 1 and center x1 = (3, 0)>.
The bridge has width 0.5 and we discretize the domain with 6848 cells and 27629 DoF. The potentials
V and K are chosen as in the previous example while V has the valley at the center x0 in the left
circle and K has a peak in the center x1 of right circle. This especially means that the function g from
(10) has a global minimum at x0, g(x0) = 0.2, and another local minimum at x1, g(x1) = 0.76, see the
plot in Figure 9. We start with the initial value w0 from (29) with R = 0.5 and c = 10 centered in x0.
The results after 14 mesh re�nement cycles are given in Table 4. Similar to the previous example, the
asymptotic behavior of the ground-energy decreases proportional to ε2. Figure 9 shows the solution

ε # cells # DoF ‖A(uh)‖2 Jε(uh) E(uh) min(uh) max(uh)

8.00e− 01 223403 912707 1.15e− 12 6.9714e+ 01 4.15e− 08 0.00 11.2071

4.00e− 01 223439 912888 2.34e− 13 4.6984e+ 00 2.59e− 09 0.00 5.7720

2.00e− 01 223145 911711 5.67e− 14 3.8183e− 01 1.69e− 10 0.00 3.2121

1.00e− 01 221399 900353 1.96e− 14 4.6948e− 02 1.56e− 11 0.00 2.1740

1.00e− 02 116435 471082 4.27e− 16 1.8153e− 04 2.83e− 13 0.00 1.2954

1.00e− 03 86534 351135 1.58e− 18 1.2556e− 06 3.00e− 15 0.00 1.9345

1.00e− 04 117155 491603 2.94e− 11 1.6484e− 08 4.73e− 16 0.00 1.1811

1.00e− 05 166586 718975 8.49e− 14 1.5885e− 10 5.29e− 17 0.00 1.1521

Table 4: Example 3: Results on the dumbbell-shaped domain with nonconstant V and K, p = 3

with a peak in the left circle for ε = 10−4. For smaller values of ε the peak of the solution cannot
be visualized in the picture. Also here, solutions do not concentrate exactly at the origin, but moving
closer to it with decreasing ε. The �nal mesh with 718975 DoF after 14 re�nement cycles for ε = 10−5

is depicted in Figure 10 and zooming into the picture, Figure 11 shows some more islands of re�ned
cells formed during the iteration as in the previous example on the unit circle. Here is room for an
improvement. Such islands can be deleted by local coarsening and this will be part of future work.
Nevertheless, the only concentration point of the solution, plotted in Figure 13, is resolved by the
re�nement strategy and the grid around the peak is plotted in Figure 12. Again, we emphasize the
scale of the plots.

Finally, we investigate the behavior of the solution when starting with an initial guess with a peak on
the right circle (example 4). For ε = 10−5 the re�ned mesh is shown in Figure 14. We observe a similar
development of re�ned cells in �gures 15 and 16 as on the left circle: there are several islands around
the local minimum of g, while the solution has exactly one peak shifted a bit from the local minimum
of g, see Figure 17. The energy level after 14 mesh re�nement cycles and estimated error are

Jε(uh) = 4.5068 · 10−10, E(uh) = 1.57 · 10−14, ‖A(uh)‖2 = 4.66 · 10−13

with 650235 DoF and max(uh) = 1.93. As mentioned in previous sections, the solution does not
exactly concentrates on the local minimum of g, but close to it. Also, the energy level is larger then
that corresponding to the solution with peak close to the global minimum of g, what is in agreement
with the theoretical results from [WZ97]. While these computed values are very small numbers, the
estimated error guarantees at least three digits. This makes it possible to compare the energy levels, a
bene�t of the error based re�nement strategy in combination with the positivity preserving approach.
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Figure 9: Example 3: Solution u (small peak on the left) and function g, ε = 10−4

Figure 10: Example 3: Final mesh, 718975 DoF Figure 11: Example 3: Final mesh, zoom 1
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Figure 12: Example 3: Final mesh, zoom 2 Figure 13: Example 3: Solution u, zoom 2

Figure 14: Example 4: Final mesh, 650235 DoF Figure 15: Example 4: Final mesh, zoom 1

Figure 16: Example 4: Final mesh, zoom 2 Figure 17: Example 4: Solution u, zoom 2
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5. Summary and Outlook

In this paper we have presented a method for computing positive energy solutions of singularly per-
turbed nonlinear Schrödinger equations. Based on the Mountain Pass geometry, we developed an
iteration scheme combining Newton's method with polynomial line searching using �nite elements.
The key for computing positive solutions of singularly perturbed problems was the combination of
the Patankar trick for preserving positivity together with adaptive mesh re�nement based on the dual
weighted residual approach estimating the error of the energy functional. We have shown numerical
results built on the deal.II library for constant and nonconstant potential functions V and K for the
unit circle and a dumbbell-shaped domain for parameters down to ε = 10−6, signi�cantly improving
schemes known from the literature, which are only applicable for ε ≥ 10−2. The results obtained are
in absolute agreement with expectations inherent from the theory and clearly show the reliability and
robustness of our new method.
There are di�erent directions for future work. The algorithm presented here does not depend on the
dimension of the underlying domain and also works in dimension three, but the computational e�ort
will be much higher and requires a more e�cient solvers. Also, the combination of our numerical
methods with other schemes for obtaining multiple solutions is an interesting aspect. Especially the
mesh re�nement scheme can be used in linking schemes [DCC99], [CDN01] or with other boundary
conditions [XYZ12].
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